AGV Path Planning Algorithm Based on Fusion of Improved A and DWA

Aiming at the problems of excessive turns, poor path smoothness and oblique crossing of obstacle vertices in the traditional A* algorithm, this paper optimizes the traditional A* algorithm and combines with the improved DWA algorithm for real-time obstacle avoidance for A G V path planning. To optim...

Full description

Saved in:
Bibliographic Details
Published inChinese Control Conference pp. 1782 - 1787
Main Authors Guo, Shiyi, Pan, Xuejun, Liu, Zeyu
Format Conference Proceeding
LanguageEnglish
Published Technical Committee on Control Theory, Chinese Association of Automation 28.07.2024
Subjects
Online AccessGet full text
ISSN1934-1768
DOI10.23919/CCC63176.2024.10662786

Cover

Loading…
Abstract Aiming at the problems of excessive turns, poor path smoothness and oblique crossing of obstacle vertices in the traditional A* algorithm, this paper optimizes the traditional A* algorithm and combines with the improved DWA algorithm for real-time obstacle avoidance for A G V path planning. To optimize the A^{*} algorithm, firstly, the evaluation function is improved by adding dynamic parameters. Secondly, the bidirectional path-finding method is adopted. Then, this paper designs a key node extraction strategy to remove redundant points. Finally, the Bezier Curve is used at the inflection point to make the route smoother. The DWA algorithm with improved evaluation function is used between the key nodes obtained by the A* algorithm. The simulation results show that the improved A^{*} algorithm is superior to traditional A^{*} algorithm in terms of path length, number of inflection points, path smoothness and number of traversal nodes. The improved DWA algorithm enhances the obstacle avoidance ability and is less likely to fall into a local optimum over traditional DWA algorithm. The fusion algorithm makes AGV reach the target node on the basis of global path planning, and avoid obstacles in real time to achieve local optimum.
AbstractList Aiming at the problems of excessive turns, poor path smoothness and oblique crossing of obstacle vertices in the traditional A* algorithm, this paper optimizes the traditional A* algorithm and combines with the improved DWA algorithm for real-time obstacle avoidance for A G V path planning. To optimize the A^{*} algorithm, firstly, the evaluation function is improved by adding dynamic parameters. Secondly, the bidirectional path-finding method is adopted. Then, this paper designs a key node extraction strategy to remove redundant points. Finally, the Bezier Curve is used at the inflection point to make the route smoother. The DWA algorithm with improved evaluation function is used between the key nodes obtained by the A* algorithm. The simulation results show that the improved A^{*} algorithm is superior to traditional A^{*} algorithm in terms of path length, number of inflection points, path smoothness and number of traversal nodes. The improved DWA algorithm enhances the obstacle avoidance ability and is less likely to fall into a local optimum over traditional DWA algorithm. The fusion algorithm makes AGV reach the target node on the basis of global path planning, and avoid obstacles in real time to achieve local optimum.
Author Guo, Shiyi
Pan, Xuejun
Liu, Zeyu
Author_xml – sequence: 1
  givenname: Shiyi
  surname: Guo
  fullname: Guo, Shiyi
  organization: Dalian University of Technology,School of Control Science and Engineering,Dalian,116024
– sequence: 2
  givenname: Xuejun
  surname: Pan
  fullname: Pan, Xuejun
  email: panxj@dlut.edu.cn
  organization: Dalian University of Technology,School of Control Science and Engineering,Dalian,116024
– sequence: 3
  givenname: Zeyu
  surname: Liu
  fullname: Liu, Zeyu
  organization: Dalian University of Technology,School of Control Science and Engineering,Dalian,116024
BookMark eNo1j11LwzAYhaMouE7_gWD-QGvefOcy1m0OBu7Cj8uRtskWadPRTsF_b0G9euBweA4nQxepTx6hOyAFZQbMfVmWkoGSBSWUF0CkpErLM5QZrZXQILQ4RzMwjOdTS1-hbBw_CJHEAJsha1dveOtOB7xtXUox7bFt9_0QT4cOP7jRN7hPePk5xgl9wOvuOPRfU2qxSw1-fLfX6DK4dvQ3f5yj1-XipXzKN8-rdWk3eZxmTzmAV6ymhlZ15ZsQjNTgG82dMy5UAFoy11RAiHNBcMIMV7wWTAZCalGris3R7a83eu93xyF2bvje_f9lP89YSrs
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.23919/CCC63176.2024.10662786
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 9887581585
9789887581581
EISSN 1934-1768
EndPage 1787
ExternalDocumentID 10662786
Genre orig-research
GroupedDBID 29B
6IE
6IF
6IK
6IL
6IN
AAJGR
AAWTH
ABLEC
ACGFS
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IPLJI
M43
OCL
RIE
RIL
ID FETCH-LOGICAL-i176t-11e73c292bcbedff9681ed84aa9afb11863adb100aaf54039474c536f00c5c7b3
IEDL.DBID RIE
IngestDate Wed Aug 27 02:00:25 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i176t-11e73c292bcbedff9681ed84aa9afb11863adb100aaf54039474c536f00c5c7b3
PageCount 6
ParticipantIDs ieee_primary_10662786
PublicationCentury 2000
PublicationDate 2024-July-28
PublicationDateYYYYMMDD 2024-07-28
PublicationDate_xml – month: 07
  year: 2024
  text: 2024-July-28
  day: 28
PublicationDecade 2020
PublicationTitle Chinese Control Conference
PublicationTitleAbbrev CCC
PublicationYear 2024
Publisher Technical Committee on Control Theory, Chinese Association of Automation
Publisher_xml – name: Technical Committee on Control Theory, Chinese Association of Automation
SSID ssj0060913
Score 2.2772408
Snippet Aiming at the problems of excessive turns, poor path smoothness and oblique crossing of obstacle vertices in the traditional A* algorithm, this paper optimizes...
SourceID ieee
SourceType Publisher
StartPage 1782
SubjectTerms AGV
Design methodology
Fusion algorithm
Heuristic algorithms
Improved A algorithm
Improved DWA algorithm
Path planning
Real-time systems
Safety
Scalability
Simulation
Title AGV Path Planning Algorithm Based on Fusion of Improved A and DWA
URI https://ieeexplore.ieee.org/document/10662786
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwELVoT3BhK2KXD1wT4jhx4mMIlAqJqgcKvVVexlABCaqSC1-PnTRsEhI3y5LjZWQ_ezLvDUJnIYDixp5-RhLlRSFhntAheJLGwlj41kEj9nw7ZqNpdDOLZyuyesOFAYAm-Ax8V2z-5etS1c5VZne4kytPWQ_17MutJWt1xy5zApdtAFdIOeHneZ4zC44uDCGM_K7pjyQqDYYMN9G4670NHXn260r66v2XMOO_h7eFBl90PTz5BKJttAbFDtr4pjS4i7Ls-h5P7G0Pd1mKcPbyWC4X1dMrvrBIpnFZ4GHtfGe4NLj1NdjaDItC48uHbICmw6u7fOStsid4CzvryiMEEqpCHkolQRvDWUpAp5EQXFjDkJRRoSUJAiGMvbZRHiWRiikzQaBilUi6h_pFWcA-wlRJKhJBDDgmquTCfhGYsS8tHihB4AAN3GrM31qBjHm3EId_1B-hdWcU5yIN02PUr5Y1nFhsr-RpY9MPA3yiow
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV05T8MwFLagDMDCVcSNB9aEOE6ceAyBUqCtOrTQrfIJFZCgKln49dhJwyUhsUWW4uvJ_uzn930PgDNfKUG12f00R8IJfEQcJn3lcBwybeBbepXYc39AuuPgdhJOFmT1igujlKqCz5RrP6u3fJmL0rrKzAq3cuUxWQYrBvhDVNO1mo2XWInLOoTLxxTR8zRNiYFHG4jgB27z8480KhWKdDbAoGm_Dh55dsuCu-L9lzTjvzu4CdpfhD04_ISiLbCksm2w_k1rcAckyfU9HJrzHmzyFMHk5TGfz4qnV3hhsEzCPIOd0nrPYK5h7W0wpQlkmYSXD0kbjDtXo7TrLPInODMz6sJBSEVY-NTngiupNSUxUjIOGKPMmAbFBDPJkecxps3BDdMgCkSIifY8EYqI413QyvJM7QGIBccsYkgry0XllJkaFdHmrkU9wZDaB207G9O3WiJj2kzEwR_lp2C1O-r3pr2bwd0hWLMGsg5TPz4CrWJeqmOD9AU_qez7AbMupew
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Chinese+Control+Conference&rft.atitle=AGV+Path+Planning+Algorithm+Based+on+Fusion+of+Improved+A+and+DWA&rft.au=Guo%2C+Shiyi&rft.au=Pan%2C+Xuejun&rft.au=Liu%2C+Zeyu&rft.date=2024-07-28&rft.pub=Technical+Committee+on+Control+Theory%2C+Chinese+Association+of+Automation&rft.eissn=1934-1768&rft.spage=1782&rft.epage=1787&rft_id=info:doi/10.23919%2FCCC63176.2024.10662786&rft.externalDocID=10662786