POOF: Part-Based One-vs.-One Features for Fine-Grained Categorization, Face Verification, and Attribute Estimation
From a set of images in a particular domain, labeled with part locations and class, we present a method to automatically learn a large and diverse set of highly discriminative intermediate features that we call Part-based One-vs.-One Features (POOFs). Each of these features specializes in discrimina...
Saved in:
Published in | 2013 IEEE Conference on Computer Vision and Pattern Recognition pp. 955 - 962 |
---|---|
Main Authors | , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.06.2013
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | From a set of images in a particular domain, labeled with part locations and class, we present a method to automatically learn a large and diverse set of highly discriminative intermediate features that we call Part-based One-vs.-One Features (POOFs). Each of these features specializes in discrimination between two particular classes based on the appearance at a particular part. We demonstrate the particular usefulness of these features for fine-grained visual categorization with new state-of-the-art results on bird species identification using the Caltech UCSD Birds (CUB) dataset and parity with the best existing results in face verification on the Labeled Faces in the Wild (LFW) dataset. Finally, we demonstrate the particular advantage of POOFs when training data is scarce. |
---|---|
AbstractList | From a set of images in a particular domain, labeled with part locations and class, we present a method to automatically learn a large and diverse set of highly discriminative intermediate features that we call Part-based One-vs.-One Features (POOFs). Each of these features specializes in discrimination between two particular classes based on the appearance at a particular part. We demonstrate the particular usefulness of these features for fine-grained visual categorization with new state-of-the-art results on bird species identification using the Caltech UCSD Birds (CUB) dataset and parity with the best existing results in face verification on the Labeled Faces in the Wild (LFW) dataset. Finally, we demonstrate the particular advantage of POOFs when training data is scarce. |
Author | Berg, Thomas Belhumeur, Peter N. |
Author_xml | – sequence: 1 givenname: Thomas surname: Berg fullname: Berg, Thomas email: tberg@cs.columbia.edu – sequence: 2 givenname: Peter N. surname: Belhumeur fullname: Belhumeur, Peter N. email: belhumeur@cs.columbia.edu |
BookMark | eNpNkE1LAzEYhKNUsK09evKSH2DWfHTz4a0u3SoUtoj2WtLsG4noriSpoL_eRXvw9AwzMAMzQaOu7wChS0YLxqi5qbabx4JTJgrG9QmaGaVZKbQspeLiFI0ZlYJIw8zonz5Hk5ReKeVCcTpGcdM09S3e2JjJnU3Q4qYD8pkKMhDXYPMhQsK-j7gOQ7KKdkCLK5vhpY_h2-bQd9e4tg7wFmLwwR0t27V4kXMM-0MGvEw5vP8mF-jM27cEsyOn6LlePlX3ZN2sHqrFmgSmyky8l8oZIzXTXqt9C047W3Il5tBKJ40VhkKptABvjJnbgaCAG8_3Dqi2Yoqu_noDAOw-4jAfv3ZSMm2Gf34A2JFd2A |
CODEN | IEEPAD |
ContentType | Conference Proceeding |
DBID | 6IE 6IH CBEJK RIE RIO |
DOI | 10.1109/CVPR.2013.128 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Computer Science |
EISBN | 9781538656723 1538656728 |
EISSN | 1063-6919 |
EndPage | 962 |
ExternalDocumentID | 6618972 |
Genre | orig-research |
GroupedDBID | 23M 29F 29O 6IE 6IH 6IK ABDPE ACGFS ALMA_UNASSIGNED_HOLDINGS CBEJK IPLJI M43 RIE RIO RNS |
ID | FETCH-LOGICAL-i175t-ff67c996818f87bdec8ca52734ed6c69a390e5783ef9994a3efe7e29f2bce08a3 |
IEDL.DBID | RIE |
ISSN | 1063-6919 |
IngestDate | Wed Aug 27 02:59:40 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i175t-ff67c996818f87bdec8ca52734ed6c69a390e5783ef9994a3efe7e29f2bce08a3 |
PageCount | 8 |
ParticipantIDs | ieee_primary_6618972 |
PublicationCentury | 2000 |
PublicationDate | 2013-June |
PublicationDateYYYYMMDD | 2013-06-01 |
PublicationDate_xml | – month: 06 year: 2013 text: 2013-June |
PublicationDecade | 2010 |
PublicationTitle | 2013 IEEE Conference on Computer Vision and Pattern Recognition |
PublicationTitleAbbrev | CVPR |
PublicationYear | 2013 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0023720 ssj0003211698 |
Score | 2.4182916 |
Snippet | From a set of images in a particular domain, labeled with part locations and class, we present a method to automatically learn a large and diverse set of... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 955 |
SubjectTerms | Accuracy attributes Birds Face face verification Feature extraction fine-grained visual categorization Histograms Image color analysis part-based recognition Training |
Title | POOF: Part-Based One-vs.-One Features for Fine-Grained Categorization, Face Verification, and Attribute Estimation |
URI | https://ieeexplore.ieee.org/document/6618972 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELZKJ6byKOItD4x1mheOwwZVQ4VUGiFadatc-ywhpBS1CQO_nnOSpggxMDmyMpws-77vzr77CLmxJMJF4GcQhZyFOoyYBC6Z0Z5C_PWEDm3t8PiZj6bh0_x23iK9phYGAMrHZ-DYz_IuX69UYVNlfcQSEUfocPcwcKtqtZp8SoCRDI-bGwTfqq-UN508YDz24l1_zf5glr7YR12B41kR9h-qKiWoJB0y3ppTvSV5d4p86aivX50a_2vvAenuyvdo2gDTIWlBdkQ6Nd-k9Wne4NRW0mE7d0zW6WSS3NEUNxR7QIDTdJIB-9w4DEdq-WKB8TlFpksT5Kfs0SpM4F8D23Bita6LOns0kWjDDHe3qXOCPSozTe_zSmAL6BBdS1U12SXTZPg6GLFaloG9IdfImTE8UhgmIdQbES01KKGk7eMWguaKxzKIXUBHEIBB9hlKHCECPzb-UoErZHBC2tkqg1NCjdCBQZahMKgJpZBWfkaIwETKuOCDOSPHdlUXH1XnjUW9oOd_T1-Qfb8Sq2Cud0na-bqAK6QM-fK63CvfTfe-jA |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NTwIxEG0IHvSECsZve_BI1_2i2_WmhBUVhBgw3khpp4kxWQwsHvz1TncXMMaDp26aPUyadt6baWceIZeWRLgI_AyikLNQhxGTwCUz2lOIv57Qoa0d7j_x7jh8eG29VkhzXQsDAPnjM3DsZ36Xr2dqaVNlV4glIo7Q4W4h7re8olprnVEJMJbh8foOwbf6K_ldJw8Yj71402Hzqv0yfLbPugLHszLsP3RVclhJaqS_Mqh4TfLuLLOpo75-9Wr8r8W7pLEp4KPDNTTtkQqk-6RWMk5anucFTq1EHVZzdTIfDgbJNR3ilmK3CHGaDlJgnwuH4UgtY1xihE6R69IEGSq7sxoT-FfbtpyYzcuyziZNJNrwgvvblFnBJpWppjdZIbEFtIPOpaibbJBx0hm1u6wUZmBvyDYyZgyPFAZKCPZGRFMNSihpO7mFoLnisQxiF9AVBGCQf4YSR4jAj40_VeAKGRyQajpL4ZBQI3RgkGcoDGtCKaQVoBEiMJEyLvhgjkjdrurko-i9MSkX9Pjv6Quy3R31e5Pe_dPjCdnxC-kK5nqnpJrNl3CGBCKbnuf75htsG8HV |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2013+IEEE+Conference+on+Computer+Vision+and+Pattern+Recognition&rft.atitle=POOF%3A+Part-Based+One-vs.-One+Features+for+Fine-Grained+Categorization%2C+Face+Verification%2C+and+Attribute+Estimation&rft.au=Berg%2C+Thomas&rft.au=Belhumeur%2C+Peter+N.&rft.date=2013-06-01&rft.pub=IEEE&rft.issn=1063-6919&rft.eissn=1063-6919&rft.spage=955&rft.epage=962&rft_id=info:doi/10.1109%2FCVPR.2013.128&rft.externalDocID=6618972 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6919&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6919&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6919&client=summon |