Automated connectivity-based groupwise cortical atlas generation: Application to data of neurosurgical patients with brain tumors for cortical parcellation prediction
This work presents an initial exploration of joint cortical surface and diffusion MRI analysis for neurosurgical patient data. We propose a groupwise cortical modeling strategy that performs an embedding of cortical points from a healthy population and a method for transferring the embedding (with a...
Saved in:
Published in | Proceedings (International Symposium on Biomedical Imaging) pp. 774 - 777 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.04.2017
|
Subjects | |
Online Access | Get full text |
ISSN | 1945-8452 |
DOI | 10.1109/ISBI.2017.7950633 |
Cover
Abstract | This work presents an initial exploration of joint cortical surface and diffusion MRI analysis for neurosurgical patient data. We propose a groupwise cortical modeling strategy that performs an embedding of cortical points from a healthy population and a method for transferring the embedding (with associated information of anatomical label) to patient datasets for cortical parcellation prediction. Our proposed method correlates cortical surfaces based on groupwise white matter connectivity characteristics via a fiber clustering scheme. Unlike other parcellation methods, correspondence of cortical surface vertices is not required. Thus the proposed method can be applied to datasets of patients with brain tumors, using an approximate cortical surface such as a white matter/gray matter boundary derived from diffusion anisotropy. Our initial results on patient data showed good overlap of functional ground truth (subject-specific functional MRI activation areas) with predicted cortical parcels, with 10 of 13 activations overlapping an anatomically corresponding prediction. |
---|---|
AbstractList | This work presents an initial exploration of joint cortical surface and diffusion MRI analysis for neurosurgical patient data. We propose a groupwise cortical modeling strategy that performs an embedding of cortical points from a healthy population and a method for transferring the embedding (with associated information of anatomical label) to patient datasets for cortical parcellation prediction. Our proposed method correlates cortical surfaces based on groupwise white matter connectivity characteristics via a fiber clustering scheme. Unlike other parcellation methods, correspondence of cortical surface vertices is not required. Thus the proposed method can be applied to datasets of patients with brain tumors, using an approximate cortical surface such as a white matter/gray matter boundary derived from diffusion anisotropy. Our initial results on patient data showed good overlap of functional ground truth (subject-specific functional MRI activation areas) with predicted cortical parcels, with 10 of 13 activations overlapping an anatomically corresponding prediction. |
Author | Norton, Isaiah Yang Song Kahali, Pegah Rathi, Yogesh Suter, Yannick Rigolo, Laura Weidong Cai Wells, William M. Golby, Alexandra J. Fan Zhang O'Donnell, Lauren J. Savadjiev, Peter |
Author_xml | – sequence: 1 surname: Fan Zhang fullname: Fan Zhang organization: Med. Sch., Brigham & Women's Hosp., Harvard Univ., Boston, MA, USA – sequence: 2 givenname: Pegah surname: Kahali fullname: Kahali, Pegah organization: Med. Sch., Brigham & Women's Hosp., Harvard Univ., Boston, MA, USA – sequence: 3 givenname: Yannick surname: Suter fullname: Suter, Yannick organization: Med. Sch., Brigham & Women's Hosp., Harvard Univ., Boston, MA, USA – sequence: 4 givenname: Isaiah surname: Norton fullname: Norton, Isaiah organization: Med. Sch., Brigham & Women's Hosp., Harvard Univ., Boston, MA, USA – sequence: 5 givenname: Laura surname: Rigolo fullname: Rigolo, Laura organization: Med. Sch., Brigham & Women's Hosp., Harvard Univ., Boston, MA, USA – sequence: 6 givenname: Peter surname: Savadjiev fullname: Savadjiev, Peter organization: Med. Sch., Brigham & Women's Hosp., Harvard Univ., Boston, MA, USA – sequence: 7 surname: Yang Song fullname: Yang Song organization: Sch. of Inf. Technol., Univ. of Sydney, Sydney, NSW, Australia – sequence: 8 givenname: Yogesh surname: Rathi fullname: Rathi, Yogesh organization: Med. Sch., Brigham & Women's Hosp., Harvard Univ., Boston, MA, USA – sequence: 9 surname: Weidong Cai fullname: Weidong Cai organization: Sch. of Inf. Technol., Univ. of Sydney, Sydney, NSW, Australia – sequence: 10 givenname: William M. surname: Wells fullname: Wells, William M. organization: Med. Sch., Brigham & Women's Hosp., Harvard Univ., Boston, MA, USA – sequence: 11 givenname: Alexandra J. surname: Golby fullname: Golby, Alexandra J. organization: Med. Sch., Brigham & Women's Hosp., Harvard Univ., Boston, MA, USA – sequence: 12 givenname: Lauren J. surname: O'Donnell fullname: O'Donnell, Lauren J. organization: Med. Sch., Brigham & Women's Hosp., Harvard Univ., Boston, MA, USA |
BookMark | eNpFkEtOwzAQQA0CiVJ6AMTGF0ixEztO2JWqQKVKLIB1NY7tYpTake1Q9UKck5RWYjbzeTNvMdfownmnEbqlZEopqe-Xb4_LaU6omIqak7IoztCkFhXlpCaUirw6RyNaM55VjOdXaBLjFxlCMFYQNkI_sz75LSStcOOd002y3zbtMwlxGG2C77udjXqAIdkGWgyphYg32ukAyXr3gGdd1w7o0ODksYIE2BvsdB987MPm76wbuHYp4p1Nn1gGsMNyv_UhYuPDv76D0Oi2Pdq6oJVtDuUNujTQRj055TH6eFq8z1-y1evzcj5bZZYKnjKjZE7KkjEpQYIROadSUspEAYoUJdGGG8WUqBtlGi6NoGB4pZjMczUwVozR3dFrtdbrLtgthP369NniF830dTg |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/ISBI.2017.7950633 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Statistics |
EISBN | 9781509011728 1509011722 |
EISSN | 1945-8452 |
EndPage | 777 |
ExternalDocumentID | 7950633 |
Genre | orig-research |
GroupedDBID | 23N 6IE 6IF 6IK 6IL 6IN AAJGR AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IPLJI M43 OCL RIE RIL RNS |
ID | FETCH-LOGICAL-i175t-fdb206644bbabaf7251bb11473ad0360ef5fd4d79cdfc5bf71af58d4b22def543 |
IEDL.DBID | RIE |
IngestDate | Wed Aug 27 02:15:38 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i175t-fdb206644bbabaf7251bb11473ad0360ef5fd4d79cdfc5bf71af58d4b22def543 |
PageCount | 4 |
ParticipantIDs | ieee_primary_7950633 |
PublicationCentury | 2000 |
PublicationDate | 2017-April |
PublicationDateYYYYMMDD | 2017-04-01 |
PublicationDate_xml | – month: 04 year: 2017 text: 2017-April |
PublicationDecade | 2010 |
PublicationTitle | Proceedings (International Symposium on Biomedical Imaging) |
PublicationTitleAbbrev | ISBI |
PublicationYear | 2017 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0000744304 |
Score | 2.070011 |
Snippet | This work presents an initial exploration of joint cortical surface and diffusion MRI analysis for neurosurgical patient data. We propose a groupwise cortical... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 774 |
SubjectTerms | Cortical parcellation prediction embedding atlas healthy control Image color analysis Magnetic resonance imaging Neurosurgery neurosurgical patient Predictive models Sociology Statistics Tumors |
Title | Automated connectivity-based groupwise cortical atlas generation: Application to data of neurosurgical patients with brain tumors for cortical parcellation prediction |
URI | https://ieeexplore.ieee.org/document/7950633 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT8IwGG6AE15UwPidHjy6AaNlmzc0EjDBmCgJN9JPQ4yMjC4m_iB_p2_bCWo8eGu2rFvaZs_zfj0vQhcKIJIlXAWKpmCgaNEJkoToIKUS0E0DyHHr0J_c90dTcjejswq63NTCKKVc8pkK7dDF8mUmCusqa8cpBUTtVVEVjpmv1dr4UwAKCZjmZeCy20nb48frsc3disPyuR8NVBx-DHfR5OvNPm3kJSwMD8X7L1HG_37aHmptK_XwwwaD9lFFLRto55vIYAPVLZ_0csxN9DEoTAYkVUksbIqL8M0jAgtmErsSj7fFWsHN3Dm5MTNAr_GzE6e2e3iFB9uQNzYZtimmONPYC2MWufuT4lKudY2tnxdz24cCm-I1y9cYWPJ2-hVzoQM_2yq3USM7bKHp8PbpZhSUrRqCBfAPE2jJrS48IZwzznQMrIlzMLXiHpOAkR2lqZZExqmQWlCu4y7TNJGER5GEe6R3gGrLbKkOEU6jWCQ0kn0JO8rBegdCKkRPEyYjsG3SI9S0yz9feTWOebnyx39fPkF1ewR8rs0pqpm8UGdAIww_d-fnE9frzpI |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LTsJAFL1BXKgbFTC-nYVLy6PM0NYdGgkoEBMhYUc6L0OMlJQ2Jn6Q3-mdaQU1LtxN2nTazEx6zn2dC3CpECJDnytHsQANFC3qju9T7QRMIrppBDluHPqDYas7pvcTNinA1aoWRillk89U1QxtLF9GIjWuspoXMETU5gZsIu5TllVrrTwqCIYUjfM8dNmoB7Xe003PZG951fzJHy1ULIJ0dmHw9e4sceSlmia8Kt5_yTL-9-P2oLKu1SOPKxTah4Kal2Dnm8xgCbYNo8wEmcvw0U6TCGmqkkSYJBeRtY9wDJxJYos83mZLhTdj6-YmYYIEmzxbeWqzi9ekvQ56kyQiJsmURJpk0phpbP-lJBdsXRLj6SXcdKIgSfoaxUuCPHk9_SK0wYNstkVs4kZmWIFx525023XyZg3ODBlI4mjJjTI8pZyHPNQe8ibO0djymqFElKwrzbSk0guE1IJx7TVCzXxJuetKvEebB1CcR3N1CCRwPeEzV7Yk7ihH-x0pqRBNTUPponUTHEHZLP90kelxTPOVP_778gVsdUeD_rTfGz6cwLY5DlnmzSkUkzhVZ0gqEn5uz9Inx4nR3w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+%28International+Symposium+on+Biomedical+Imaging%29&rft.atitle=Automated+connectivity-based+groupwise+cortical+atlas+generation%3A+Application+to+data+of+neurosurgical+patients+with+brain+tumors+for+cortical+parcellation+prediction&rft.au=Fan+Zhang&rft.au=Kahali%2C+Pegah&rft.au=Suter%2C+Yannick&rft.au=Norton%2C+Isaiah&rft.date=2017-04-01&rft.pub=IEEE&rft.eissn=1945-8452&rft.spage=774&rft.epage=777&rft_id=info:doi/10.1109%2FISBI.2017.7950633&rft.externalDocID=7950633 |