Automated connectivity-based groupwise cortical atlas generation: Application to data of neurosurgical patients with brain tumors for cortical parcellation prediction

This work presents an initial exploration of joint cortical surface and diffusion MRI analysis for neurosurgical patient data. We propose a groupwise cortical modeling strategy that performs an embedding of cortical points from a healthy population and a method for transferring the embedding (with a...

Full description

Saved in:
Bibliographic Details
Published inProceedings (International Symposium on Biomedical Imaging) pp. 774 - 777
Main Authors Fan Zhang, Kahali, Pegah, Suter, Yannick, Norton, Isaiah, Rigolo, Laura, Savadjiev, Peter, Yang Song, Rathi, Yogesh, Weidong Cai, Wells, William M., Golby, Alexandra J., O'Donnell, Lauren J.
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.04.2017
Subjects
Online AccessGet full text
ISSN1945-8452
DOI10.1109/ISBI.2017.7950633

Cover

Abstract This work presents an initial exploration of joint cortical surface and diffusion MRI analysis for neurosurgical patient data. We propose a groupwise cortical modeling strategy that performs an embedding of cortical points from a healthy population and a method for transferring the embedding (with associated information of anatomical label) to patient datasets for cortical parcellation prediction. Our proposed method correlates cortical surfaces based on groupwise white matter connectivity characteristics via a fiber clustering scheme. Unlike other parcellation methods, correspondence of cortical surface vertices is not required. Thus the proposed method can be applied to datasets of patients with brain tumors, using an approximate cortical surface such as a white matter/gray matter boundary derived from diffusion anisotropy. Our initial results on patient data showed good overlap of functional ground truth (subject-specific functional MRI activation areas) with predicted cortical parcels, with 10 of 13 activations overlapping an anatomically corresponding prediction.
AbstractList This work presents an initial exploration of joint cortical surface and diffusion MRI analysis for neurosurgical patient data. We propose a groupwise cortical modeling strategy that performs an embedding of cortical points from a healthy population and a method for transferring the embedding (with associated information of anatomical label) to patient datasets for cortical parcellation prediction. Our proposed method correlates cortical surfaces based on groupwise white matter connectivity characteristics via a fiber clustering scheme. Unlike other parcellation methods, correspondence of cortical surface vertices is not required. Thus the proposed method can be applied to datasets of patients with brain tumors, using an approximate cortical surface such as a white matter/gray matter boundary derived from diffusion anisotropy. Our initial results on patient data showed good overlap of functional ground truth (subject-specific functional MRI activation areas) with predicted cortical parcels, with 10 of 13 activations overlapping an anatomically corresponding prediction.
Author Norton, Isaiah
Yang Song
Kahali, Pegah
Rathi, Yogesh
Suter, Yannick
Rigolo, Laura
Weidong Cai
Wells, William M.
Golby, Alexandra J.
Fan Zhang
O'Donnell, Lauren J.
Savadjiev, Peter
Author_xml – sequence: 1
  surname: Fan Zhang
  fullname: Fan Zhang
  organization: Med. Sch., Brigham & Women's Hosp., Harvard Univ., Boston, MA, USA
– sequence: 2
  givenname: Pegah
  surname: Kahali
  fullname: Kahali, Pegah
  organization: Med. Sch., Brigham & Women's Hosp., Harvard Univ., Boston, MA, USA
– sequence: 3
  givenname: Yannick
  surname: Suter
  fullname: Suter, Yannick
  organization: Med. Sch., Brigham & Women's Hosp., Harvard Univ., Boston, MA, USA
– sequence: 4
  givenname: Isaiah
  surname: Norton
  fullname: Norton, Isaiah
  organization: Med. Sch., Brigham & Women's Hosp., Harvard Univ., Boston, MA, USA
– sequence: 5
  givenname: Laura
  surname: Rigolo
  fullname: Rigolo, Laura
  organization: Med. Sch., Brigham & Women's Hosp., Harvard Univ., Boston, MA, USA
– sequence: 6
  givenname: Peter
  surname: Savadjiev
  fullname: Savadjiev, Peter
  organization: Med. Sch., Brigham & Women's Hosp., Harvard Univ., Boston, MA, USA
– sequence: 7
  surname: Yang Song
  fullname: Yang Song
  organization: Sch. of Inf. Technol., Univ. of Sydney, Sydney, NSW, Australia
– sequence: 8
  givenname: Yogesh
  surname: Rathi
  fullname: Rathi, Yogesh
  organization: Med. Sch., Brigham & Women's Hosp., Harvard Univ., Boston, MA, USA
– sequence: 9
  surname: Weidong Cai
  fullname: Weidong Cai
  organization: Sch. of Inf. Technol., Univ. of Sydney, Sydney, NSW, Australia
– sequence: 10
  givenname: William M.
  surname: Wells
  fullname: Wells, William M.
  organization: Med. Sch., Brigham & Women's Hosp., Harvard Univ., Boston, MA, USA
– sequence: 11
  givenname: Alexandra J.
  surname: Golby
  fullname: Golby, Alexandra J.
  organization: Med. Sch., Brigham & Women's Hosp., Harvard Univ., Boston, MA, USA
– sequence: 12
  givenname: Lauren J.
  surname: O'Donnell
  fullname: O'Donnell, Lauren J.
  organization: Med. Sch., Brigham & Women's Hosp., Harvard Univ., Boston, MA, USA
BookMark eNpFkEtOwzAQQA0CiVJ6AMTGF0ixEztO2JWqQKVKLIB1NY7tYpTake1Q9UKck5RWYjbzeTNvMdfownmnEbqlZEopqe-Xb4_LaU6omIqak7IoztCkFhXlpCaUirw6RyNaM55VjOdXaBLjFxlCMFYQNkI_sz75LSStcOOd002y3zbtMwlxGG2C77udjXqAIdkGWgyphYg32ukAyXr3gGdd1w7o0ODksYIE2BvsdB987MPm76wbuHYp4p1Nn1gGsMNyv_UhYuPDv76D0Oi2Pdq6oJVtDuUNujTQRj055TH6eFq8z1-y1evzcj5bZZYKnjKjZE7KkjEpQYIROadSUspEAYoUJdGGG8WUqBtlGi6NoGB4pZjMczUwVozR3dFrtdbrLtgthP369NniF830dTg
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ISBI.2017.7950633
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Statistics
EISBN 9781509011728
1509011722
EISSN 1945-8452
EndPage 777
ExternalDocumentID 7950633
Genre orig-research
GroupedDBID 23N
6IE
6IF
6IK
6IL
6IN
AAJGR
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IPLJI
M43
OCL
RIE
RIL
RNS
ID FETCH-LOGICAL-i175t-fdb206644bbabaf7251bb11473ad0360ef5fd4d79cdfc5bf71af58d4b22def543
IEDL.DBID RIE
IngestDate Wed Aug 27 02:15:38 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-fdb206644bbabaf7251bb11473ad0360ef5fd4d79cdfc5bf71af58d4b22def543
PageCount 4
ParticipantIDs ieee_primary_7950633
PublicationCentury 2000
PublicationDate 2017-April
PublicationDateYYYYMMDD 2017-04-01
PublicationDate_xml – month: 04
  year: 2017
  text: 2017-April
PublicationDecade 2010
PublicationTitle Proceedings (International Symposium on Biomedical Imaging)
PublicationTitleAbbrev ISBI
PublicationYear 2017
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0000744304
Score 2.070011
Snippet This work presents an initial exploration of joint cortical surface and diffusion MRI analysis for neurosurgical patient data. We propose a groupwise cortical...
SourceID ieee
SourceType Publisher
StartPage 774
SubjectTerms Cortical parcellation prediction
embedding atlas
healthy control
Image color analysis
Magnetic resonance imaging
Neurosurgery
neurosurgical patient
Predictive models
Sociology
Statistics
Tumors
Title Automated connectivity-based groupwise cortical atlas generation: Application to data of neurosurgical patients with brain tumors for cortical parcellation prediction
URI https://ieeexplore.ieee.org/document/7950633
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT8IwGG6AE15UwPidHjy6AaNlmzc0EjDBmCgJN9JPQ4yMjC4m_iB_p2_bCWo8eGu2rFvaZs_zfj0vQhcKIJIlXAWKpmCgaNEJkoToIKUS0E0DyHHr0J_c90dTcjejswq63NTCKKVc8pkK7dDF8mUmCusqa8cpBUTtVVEVjpmv1dr4UwAKCZjmZeCy20nb48frsc3disPyuR8NVBx-DHfR5OvNPm3kJSwMD8X7L1HG_37aHmptK_XwwwaD9lFFLRto55vIYAPVLZ_0csxN9DEoTAYkVUksbIqL8M0jAgtmErsSj7fFWsHN3Dm5MTNAr_GzE6e2e3iFB9uQNzYZtimmONPYC2MWufuT4lKudY2tnxdz24cCm-I1y9cYWPJ2-hVzoQM_2yq3USM7bKHp8PbpZhSUrRqCBfAPE2jJrS48IZwzznQMrIlzMLXiHpOAkR2lqZZExqmQWlCu4y7TNJGER5GEe6R3gGrLbKkOEU6jWCQ0kn0JO8rBegdCKkRPEyYjsG3SI9S0yz9feTWOebnyx39fPkF1ewR8rs0pqpm8UGdAIww_d-fnE9frzpI
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LTsJAFL1BXKgbFTC-nYVLy6PM0NYdGgkoEBMhYUc6L0OMlJQ2Jn6Q3-mdaQU1LtxN2nTazEx6zn2dC3CpECJDnytHsQANFC3qju9T7QRMIrppBDluHPqDYas7pvcTNinA1aoWRillk89U1QxtLF9GIjWuspoXMETU5gZsIu5TllVrrTwqCIYUjfM8dNmoB7Xe003PZG951fzJHy1ULIJ0dmHw9e4sceSlmia8Kt5_yTL-9-P2oLKu1SOPKxTah4Kal2Dnm8xgCbYNo8wEmcvw0U6TCGmqkkSYJBeRtY9wDJxJYos83mZLhTdj6-YmYYIEmzxbeWqzi9ekvQ56kyQiJsmURJpk0phpbP-lJBdsXRLj6SXcdKIgSfoaxUuCPHk9_SK0wYNstkVs4kZmWIFx525023XyZg3ODBlI4mjJjTI8pZyHPNQe8ibO0djymqFElKwrzbSk0guE1IJx7TVCzXxJuetKvEebB1CcR3N1CCRwPeEzV7Yk7ihH-x0pqRBNTUPponUTHEHZLP90kelxTPOVP_778gVsdUeD_rTfGz6cwLY5DlnmzSkUkzhVZ0gqEn5uz9Inx4nR3w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+%28International+Symposium+on+Biomedical+Imaging%29&rft.atitle=Automated+connectivity-based+groupwise+cortical+atlas+generation%3A+Application+to+data+of+neurosurgical+patients+with+brain+tumors+for+cortical+parcellation+prediction&rft.au=Fan+Zhang&rft.au=Kahali%2C+Pegah&rft.au=Suter%2C+Yannick&rft.au=Norton%2C+Isaiah&rft.date=2017-04-01&rft.pub=IEEE&rft.eissn=1945-8452&rft.spage=774&rft.epage=777&rft_id=info:doi/10.1109%2FISBI.2017.7950633&rft.externalDocID=7950633