Determine the Parameter of Kernel Discriminant Analysis in Accordance with Fisher Criterion

Feature extraction performance of kernel discriminant analysis (KDA) is influenced by the value of the parameter of the kernel function. Usually one is hard to effectively exert the performance of FDA for it is not easy to determine the optimal value for the kernel parameter. Though some approaches...

Full description

Saved in:
Bibliographic Details
Published in2007 International Conference on Machine Learning and Cybernetics Vol. 5; pp. 2931 - 2935
Main Authors Xu, Yong, Li, Wei-Jie
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.08.2007
Subjects
Online AccessGet full text
ISBN1424409721
9781424409723
ISSN2160-133X
DOI10.1109/ICMLC.2007.4370649

Cover

Abstract Feature extraction performance of kernel discriminant analysis (KDA) is influenced by the value of the parameter of the kernel function. Usually one is hard to effectively exert the performance of FDA for it is not easy to determine the optimal value for the kernel parameter. Though some approaches have been proposed to automatically determine the parameter of FDA, it seems that none of these approaches takes the nature of FDA into account in selecting the value for the kernel parameter. In this paper, we develop a novel parameter selection approach that is subject to the essence of Fisher discriminant analysis. This approach is theoretically able to achieve the kernel parameter that is associated with a feature space with satisfactory linear separability. The approach can be carried out using an iterative computation procedure. Experimental results show that the developed approach does result in much higher classification accuracy than naive KDA.
AbstractList Feature extraction performance of kernel discriminant analysis (KDA) is influenced by the value of the parameter of the kernel function. Usually one is hard to effectively exert the performance of FDA for it is not easy to determine the optimal value for the kernel parameter. Though some approaches have been proposed to automatically determine the parameter of FDA, it seems that none of these approaches takes the nature of FDA into account in selecting the value for the kernel parameter. In this paper, we develop a novel parameter selection approach that is subject to the essence of Fisher discriminant analysis. This approach is theoretically able to achieve the kernel parameter that is associated with a feature space with satisfactory linear separability. The approach can be carried out using an iterative computation procedure. Experimental results show that the developed approach does result in much higher classification accuracy than naive KDA.
Author Xu, Yong
Li, Wei-Jie
Author_xml – sequence: 1
  givenname: Yong
  surname: Xu
  fullname: Xu, Yong
  organization: Department of Computer Science & Technology, Shenzhen Graduate School, Harbin Institute of Technology, Shenzhen 518005, China. E-MAIL: laterfall2@yahoo.com.cn
– sequence: 2
  givenname: Wei-Jie
  surname: Li
  fullname: Li, Wei-Jie
  organization: Department of Computer Science & Technology, Shenzhen Graduate School, Harbin Institute of Technology, Shenzhen 518005, China. E-MAIL: laterfall2@yahoo.com.cn, weijiekaoyan@163.com
BookMark eNo1UMtKAzEUjVjBts4P6CY_MPXmMclkWaZWiyO6UBBclJgHE2kzkgxI_94p1tXh3PPgcmZoEvvoELomsCAE1O2meWqbBQWQC84kCK7OUKFkTTjlHJRkcI5m_4SSCZpSIqAkjL1foiLnLwAgUnCgbIo-Vm5waR-iw0Pn8ItOen-84N7jR5ei2-FVyCaF0aLjgJdR7w45ZBwiXhrTJ6ujcfgnDB1eh9yNySaFsSD08QpdeL3LrjjhHL2t716bh7J9vt80y7YMRFZD6Y0HbiuqBFAPquZgKRO1rj3xQCtPpDnKglkrqLWe1UbX8lMYqyqprGZzdPPXG5xz2-_xV50O29M27BcfgFgf
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICMLC.2007.4370649
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 9781424409730
142440973X
EndPage 2935
ExternalDocumentID 4370649
Genre orig-research
GroupedDBID 6IE
6IF
6IG
6IH
6IK
6IL
6IM
6IN
AAJGR
AARBI
AAWTH
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
IERZE
OCL
RIE
RIL
RIO
ID FETCH-LOGICAL-i175t-fcf04d529602f09840d2368a8f1f025f17c4d5263dd62ddf38ca87b6cd9579da3
IEDL.DBID RIE
ISBN 1424409721
9781424409723
ISSN 2160-133X
IngestDate Wed Aug 27 02:10:16 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-fcf04d529602f09840d2368a8f1f025f17c4d5263dd62ddf38ca87b6cd9579da3
PageCount 5
ParticipantIDs ieee_primary_4370649
PublicationCentury 2000
PublicationDate 2007-Aug.
PublicationDateYYYYMMDD 2007-08-01
PublicationDate_xml – month: 08
  year: 2007
  text: 2007-Aug.
PublicationDecade 2000
PublicationTitle 2007 International Conference on Machine Learning and Cybernetics
PublicationTitleAbbrev ICMLC
PublicationYear 2007
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0001764023
ssj0000744891
Score 1.3895022
Snippet Feature extraction performance of kernel discriminant analysis (KDA) is influenced by the value of the parameter of the kernel function. Usually one is hard to...
SourceID ieee
SourceType Publisher
StartPage 2931
SubjectTerms Computer science
Cybernetics
Design methodology
Feature extraction
Fisher criterion
Iterative methods
Kernel
Kernel discriminant analysis (KDA)
Kernel function
Machine learning
Machine learning algorithms
Parameter selection
Pattern analysis
Performance analysis
Title Determine the Parameter of Kernel Discriminant Analysis in Accordance with Fisher Criterion
URI https://ieeexplore.ieee.org/document/4370649
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JT8JQEJ4AJ0-oYNzzDh4tvLavr-0ZJLhgOEhC4oH0bQnRFEPKxV_vTBeMxoO3bukynXa2b74BuOFGkNcReMphpCNiJT0lUu1FkfMj5dtYldic2bOcLsTDMlq24HbfC2OtLcFndkCLZS3fbPSOUmVDEcZoQdM2tFHNql6tfT4FTaFIat6XMr8SSwyNqMAc-JJ7GIotm76ukrGmoXuq18OmoYanw_vR7GlUsRvWV_wxeqW0PJMuzJp7rgAnb4NdoQb68xed438f6hD63z1-bL63XkfQsvkxdJshD6z-5nvwOq4BM5ahr8jmGaG56IiNY492m9t3Nl7Tv6fC1LCG5YStc0ajKLaG9IpRvpdVc9YZjVdAxd_kfVhM7l5GU6-eyOCt0c0oPKcdF4ZKtTxwPMXg0AShTLLE-Q6dJ-fHmnbL0BgZGOPCRGcJvn9tqBposvAEOvkmt6fAOJ4rCrmKhBUitTqRqYkdytyijxUk_hn0SFarj4p0Y1WL6fzvzRdwUCVdCZl3CZ1iu7NX6C0U6rpUky_qqrbq
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8JAEN4gHvSECsa3e_BoYdtut-0ZNCCUcICExAPpvhKiaQ2Bi7_emT4wGg_e-kq7nUw7r2--IeSBaY5eh-dIC5EOD6VwJI-VEwTWDaRrQllgc5KpGC74yzJYNsjjvhfGGFOAz0wXN4tavs7VDlNlPe6HYEHjA3IIdp8HZbfWPqMCxpBHFfNLkWEJBQRHWGL2XMEcCMaWdWdXwVlTEz5V-37dUsPi3qifTPolv2H1zB_DVwrb89wiSb3qEnLy1t1tZVd9_iJ0_O9rnZDOd5cfne3t1ylpmOyMtOoxD7T66tvkdVBBZgwFb5HOUsRz4RW5pWOzycw7Hazx71OiamjNc0LXGcVhFBuNmkUx40vLSesUByyA6udZhyyen-b9oVPNZHDW4GhsHass4xqLtcyzLIbwUHu-iNLIuhbcJ-uGCk8LX2vhaW39SKURaIDSWA_UqX9OmlmemQtCGdwr8JkMuOE8NioSsQ4tyNyAl-VF7iVpo6xWHyXtxqoS09Xfh-_J0XCeTFaT0XR8TY7LFCzi9G5Ic7vZmVvwHbbyrlCZL7QYujc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2007+International+Conference+on+Machine+Learning+and+Cybernetics&rft.atitle=Determine+the+Parameter+of+Kernel+Discriminant+Analysis+in+Accordance+with+Fisher+Criterion&rft.au=Xu%2C+Yong&rft.au=Li%2C+Wei-Jie&rft.date=2007-08-01&rft.pub=IEEE&rft.isbn=9781424409723&rft.issn=2160-133X&rft.volume=5&rft.spage=2931&rft.epage=2935&rft_id=info:doi/10.1109%2FICMLC.2007.4370649&rft.externalDocID=4370649
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2160-133X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2160-133X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2160-133X&client=summon