Determine the Parameter of Kernel Discriminant Analysis in Accordance with Fisher Criterion
Feature extraction performance of kernel discriminant analysis (KDA) is influenced by the value of the parameter of the kernel function. Usually one is hard to effectively exert the performance of FDA for it is not easy to determine the optimal value for the kernel parameter. Though some approaches...
Saved in:
Published in | 2007 International Conference on Machine Learning and Cybernetics Vol. 5; pp. 2931 - 2935 |
---|---|
Main Authors | , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.08.2007
|
Subjects | |
Online Access | Get full text |
ISBN | 1424409721 9781424409723 |
ISSN | 2160-133X |
DOI | 10.1109/ICMLC.2007.4370649 |
Cover
Abstract | Feature extraction performance of kernel discriminant analysis (KDA) is influenced by the value of the parameter of the kernel function. Usually one is hard to effectively exert the performance of FDA for it is not easy to determine the optimal value for the kernel parameter. Though some approaches have been proposed to automatically determine the parameter of FDA, it seems that none of these approaches takes the nature of FDA into account in selecting the value for the kernel parameter. In this paper, we develop a novel parameter selection approach that is subject to the essence of Fisher discriminant analysis. This approach is theoretically able to achieve the kernel parameter that is associated with a feature space with satisfactory linear separability. The approach can be carried out using an iterative computation procedure. Experimental results show that the developed approach does result in much higher classification accuracy than naive KDA. |
---|---|
AbstractList | Feature extraction performance of kernel discriminant analysis (KDA) is influenced by the value of the parameter of the kernel function. Usually one is hard to effectively exert the performance of FDA for it is not easy to determine the optimal value for the kernel parameter. Though some approaches have been proposed to automatically determine the parameter of FDA, it seems that none of these approaches takes the nature of FDA into account in selecting the value for the kernel parameter. In this paper, we develop a novel parameter selection approach that is subject to the essence of Fisher discriminant analysis. This approach is theoretically able to achieve the kernel parameter that is associated with a feature space with satisfactory linear separability. The approach can be carried out using an iterative computation procedure. Experimental results show that the developed approach does result in much higher classification accuracy than naive KDA. |
Author | Xu, Yong Li, Wei-Jie |
Author_xml | – sequence: 1 givenname: Yong surname: Xu fullname: Xu, Yong organization: Department of Computer Science & Technology, Shenzhen Graduate School, Harbin Institute of Technology, Shenzhen 518005, China. E-MAIL: laterfall2@yahoo.com.cn – sequence: 2 givenname: Wei-Jie surname: Li fullname: Li, Wei-Jie organization: Department of Computer Science & Technology, Shenzhen Graduate School, Harbin Institute of Technology, Shenzhen 518005, China. E-MAIL: laterfall2@yahoo.com.cn, weijiekaoyan@163.com |
BookMark | eNo1UMtKAzEUjVjBts4P6CY_MPXmMclkWaZWiyO6UBBclJgHE2kzkgxI_94p1tXh3PPgcmZoEvvoELomsCAE1O2meWqbBQWQC84kCK7OUKFkTTjlHJRkcI5m_4SSCZpSIqAkjL1foiLnLwAgUnCgbIo-Vm5waR-iw0Pn8ItOen-84N7jR5ei2-FVyCaF0aLjgJdR7w45ZBwiXhrTJ6ujcfgnDB1eh9yNySaFsSD08QpdeL3LrjjhHL2t716bh7J9vt80y7YMRFZD6Y0HbiuqBFAPquZgKRO1rj3xQCtPpDnKglkrqLWe1UbX8lMYqyqprGZzdPPXG5xz2-_xV50O29M27BcfgFgf |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/ICMLC.2007.4370649 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISBN | 9781424409730 142440973X |
EndPage | 2935 |
ExternalDocumentID | 4370649 |
Genre | orig-research |
GroupedDBID | 6IE 6IF 6IG 6IH 6IK 6IL 6IM 6IN AAJGR AARBI AAWTH ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK IERZE OCL RIE RIL RIO |
ID | FETCH-LOGICAL-i175t-fcf04d529602f09840d2368a8f1f025f17c4d5263dd62ddf38ca87b6cd9579da3 |
IEDL.DBID | RIE |
ISBN | 1424409721 9781424409723 |
ISSN | 2160-133X |
IngestDate | Wed Aug 27 02:10:16 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i175t-fcf04d529602f09840d2368a8f1f025f17c4d5263dd62ddf38ca87b6cd9579da3 |
PageCount | 5 |
ParticipantIDs | ieee_primary_4370649 |
PublicationCentury | 2000 |
PublicationDate | 2007-Aug. |
PublicationDateYYYYMMDD | 2007-08-01 |
PublicationDate_xml | – month: 08 year: 2007 text: 2007-Aug. |
PublicationDecade | 2000 |
PublicationTitle | 2007 International Conference on Machine Learning and Cybernetics |
PublicationTitleAbbrev | ICMLC |
PublicationYear | 2007 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0001764023 ssj0000744891 |
Score | 1.3895022 |
Snippet | Feature extraction performance of kernel discriminant analysis (KDA) is influenced by the value of the parameter of the kernel function. Usually one is hard to... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 2931 |
SubjectTerms | Computer science Cybernetics Design methodology Feature extraction Fisher criterion Iterative methods Kernel Kernel discriminant analysis (KDA) Kernel function Machine learning Machine learning algorithms Parameter selection Pattern analysis Performance analysis |
Title | Determine the Parameter of Kernel Discriminant Analysis in Accordance with Fisher Criterion |
URI | https://ieeexplore.ieee.org/document/4370649 |
Volume | 5 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JT8JQEJ4AJ0-oYNzzDh4tvLavr-0ZJLhgOEhC4oH0bQnRFEPKxV_vTBeMxoO3bukynXa2b74BuOFGkNcReMphpCNiJT0lUu1FkfMj5dtYldic2bOcLsTDMlq24HbfC2OtLcFndkCLZS3fbPSOUmVDEcZoQdM2tFHNql6tfT4FTaFIat6XMr8SSwyNqMAc-JJ7GIotm76ukrGmoXuq18OmoYanw_vR7GlUsRvWV_wxeqW0PJMuzJp7rgAnb4NdoQb68xed438f6hD63z1-bL63XkfQsvkxdJshD6z-5nvwOq4BM5ahr8jmGaG56IiNY492m9t3Nl7Tv6fC1LCG5YStc0ajKLaG9IpRvpdVc9YZjVdAxd_kfVhM7l5GU6-eyOCt0c0oPKcdF4ZKtTxwPMXg0AShTLLE-Q6dJ-fHmnbL0BgZGOPCRGcJvn9tqBposvAEOvkmt6fAOJ4rCrmKhBUitTqRqYkdytyijxUk_hn0SFarj4p0Y1WL6fzvzRdwUCVdCZl3CZ1iu7NX6C0U6rpUky_qqrbq |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8JAEN4gHvSECsa3e_BoYdtut-0ZNCCUcICExAPpvhKiaQ2Bi7_emT4wGg_e-kq7nUw7r2--IeSBaY5eh-dIC5EOD6VwJI-VEwTWDaRrQllgc5KpGC74yzJYNsjjvhfGGFOAz0wXN4tavs7VDlNlPe6HYEHjA3IIdp8HZbfWPqMCxpBHFfNLkWEJBQRHWGL2XMEcCMaWdWdXwVlTEz5V-37dUsPi3qifTPolv2H1zB_DVwrb89wiSb3qEnLy1t1tZVd9_iJ0_O9rnZDOd5cfne3t1ylpmOyMtOoxD7T66tvkdVBBZgwFb5HOUsRz4RW5pWOzycw7Hazx71OiamjNc0LXGcVhFBuNmkUx40vLSesUByyA6udZhyyen-b9oVPNZHDW4GhsHass4xqLtcyzLIbwUHu-iNLIuhbcJ-uGCk8LX2vhaW39SKURaIDSWA_UqX9OmlmemQtCGdwr8JkMuOE8NioSsQ4tyNyAl-VF7iVpo6xWHyXtxqoS09Xfh-_J0XCeTFaT0XR8TY7LFCzi9G5Ic7vZmVvwHbbyrlCZL7QYujc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2007+International+Conference+on+Machine+Learning+and+Cybernetics&rft.atitle=Determine+the+Parameter+of+Kernel+Discriminant+Analysis+in+Accordance+with+Fisher+Criterion&rft.au=Xu%2C+Yong&rft.au=Li%2C+Wei-Jie&rft.date=2007-08-01&rft.pub=IEEE&rft.isbn=9781424409723&rft.issn=2160-133X&rft.volume=5&rft.spage=2931&rft.epage=2935&rft_id=info:doi/10.1109%2FICMLC.2007.4370649&rft.externalDocID=4370649 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2160-133X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2160-133X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2160-133X&client=summon |