Object class recognition by boosting a part-based model

We propose a new technique for object class recognition, which learns a generative appearance model in a discriminative manner. The technique is based on the intermediate representation of an image as a set of patches, which are extracted using an interest point detector. The learning problem become...

Full description

Saved in:
Bibliographic Details
Published in2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05) Vol. 1; pp. 702 - 709 vol. 1
Main Authors Bar-Hillel, A., Hertz, T., Weinshall, D.
Format Conference Proceeding
LanguageEnglish
Published IEEE 2005
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We propose a new technique for object class recognition, which learns a generative appearance model in a discriminative manner. The technique is based on the intermediate representation of an image as a set of patches, which are extracted using an interest point detector. The learning problem becomes an instance of supervised learning from sets of unordered features. In order to solve this problem, we designed a classifier based on a simple, part based, generative object model. Only the appearance of each part is modeled. When learning the model parameters, we use a discriminative boosting algorithm which minimizes the loss of the training error directly. The models thus learnt have clear probabilistic semantics, and also maintain good classification performance. The performance of the algorithm has been tested using publicly available benchmark data, and shown to be comparable to other state of the art algorithms for this task; our main advantage in these comparisons is speed (order of magnitudes faster) and scalability.
AbstractList We propose a new technique for object class recognition, which learns a generative appearance model in a discriminative manner. The technique is based on the intermediate representation of an image as a set of patches, which are extracted using an interest point detector. The learning problem becomes an instance of supervised learning from sets of unordered features. In order to solve this problem, we designed a classifier based on a simple, part based, generative object model. Only the appearance of each part is modeled. When learning the model parameters, we use a discriminative boosting algorithm which minimizes the loss of the training error directly. The models thus learnt have clear probabilistic semantics, and also maintain good classification performance. The performance of the algorithm has been tested using publicly available benchmark data, and shown to be comparable to other state of the art algorithms for this task; our main advantage in these comparisons is speed (order of magnitudes faster) and scalability.
Author Bar-Hillel, A.
Weinshall, D.
Hertz, T.
Author_xml – sequence: 1
  givenname: A.
  surname: Bar-Hillel
  fullname: Bar-Hillel, A.
  organization: Sch. of Comput. Sci. & Eng., Jerusalem Hebrew Univ., Israel
– sequence: 2
  givenname: T.
  surname: Hertz
  fullname: Hertz, T.
  organization: Sch. of Comput. Sci. & Eng., Jerusalem Hebrew Univ., Israel
– sequence: 3
  givenname: D.
  surname: Weinshall
  fullname: Weinshall, D.
  organization: Sch. of Comput. Sci. & Eng., Jerusalem Hebrew Univ., Israel
BookMark eNpNjMtKAzEUQINWsK1dunKTH5gxyZ2bTJZSfEGhIuq25HGnpEwnZTKb_r2CLjybszhwFmw25IEYu5WillLY-_XX23uthMBaobhgcyk0VNpKe8kWwmiLCoxSs3_hmq1KOYgfwELbqDkzW3-gMPHQu1L4SCHvhzSlPHB_5j7nMqVhzx0_uXGqvCsU-TFH6m_YVef6Qqs_L9nn0-PH-qXabJ9f1w-bKkmDU9UFIq2daj1Ai9Y3sYUYbYhKo42IjevQdIjQuUBI0aMGByG0IFAQGViyu99vIqLdaUxHN553stEGwMA38X1JjQ
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/CVPR.2005.250
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Computer Science
EISSN 1063-6919
EndPage 709 vol. 1
ExternalDocumentID 1467337
Genre orig-research
GroupedDBID 23M
29F
29O
6IE
6IH
6IK
ABDPE
ACGFS
ALMA_UNASSIGNED_HOLDINGS
CBEJK
IPLJI
M43
RIE
RIO
RNS
ID FETCH-LOGICAL-i175t-fcee66a28b33859b4d83dd9cd2659d554af57f553face5edb563a3cc83050ee73
IEDL.DBID RIE
ISBN 0769523722
9780769523729
ISSN 1063-6919
IngestDate Wed Aug 27 02:18:22 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-fcee66a28b33859b4d83dd9cd2659d554af57f553face5edb563a3cc83050ee73
ParticipantIDs ieee_primary_1467337
PublicationCentury 2000
PublicationDate 20050000
PublicationDateYYYYMMDD 2005-01-01
PublicationDate_xml – year: 2005
  text: 20050000
PublicationDecade 2000
PublicationTitle 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05)
PublicationTitleAbbrev CVPR
PublicationYear 2005
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0000393842
ssj0023720
ssj0003211698
Score 1.7165776
Snippet We propose a new technique for object class recognition, which learns a generative appearance model in a discriminative manner. The technique is based on the...
SourceID ieee
SourceType Publisher
StartPage 702
SubjectTerms Benchmark testing
Boosting
Computer science
Computer vision
Detectors
Image recognition
Image representation
Object recognition
Scalability
Supervised learning
Title Object class recognition by boosting a part-based model
URI https://ieeexplore.ieee.org/document/1467337
Volume 1
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEA61J09VW_FNDh5NH5tNNjkXSxGqRaz0VnaSWRBhW-z2oL_eJPuoiAdvm8klG5LMN49vhpDbGBWoIViWZGhYzG3E9BBi5l6-KDVgIAFPcJ49yukifliKZYvcNVwYRAzJZ9j3nyGWb9dm511lA3-rOU8OyIEz3EquVuNP8RxTVZl5fsydZSN1E1GIfDeWEPmUnEk90qUJr4WfiKpKPPVY74txDsav8-fS9RJ5bv6PFixBA006ZFavvUw8ee_vCuibr19lHf_7c0ekt-f60XmjxY5JC_MT0qnAKa2u_taJ6v4PtaxLkifwXhxqPAKnTSrSOqfwSR163_qUaprSjTuezKtLS0PjnR5ZTO5fxlNWNWJgbw5dFCxza5AyjRQ4g1ZoiK3i1mpjIym0dYAkzUSSCcGz1KBAC0LylBuj3GMyREz4KWnn6xzPCE2MjlGaDN1cPNIKQEnk4HBL6mwrZc5J12_NalPW2lhVu3Lxt_iSHIZSqsElckXaxccOrx1IKOAmnI5vT3Wzbw
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1LS8QwEB58HPTkG9_moMesa9KkycGTD9a3iIq3tUmmIMKuuLuI_hb_iv_NSdutIl4Fb80ECs10MvPNE2AzQeNM0wWe5uh5IoPgtukSTjefyLzzLnWxwPnsXLdukuM7dTcC73UtDCIWyWfYiI9FLD90_SC6yrajVEuZVimUJ_j6QgCtt3u0T9zcEuLw4HqvxasZAvyBFGOf56QEtM6EcYTFlHVJMDIE64PQygbSpVmu0lwpmWceFQantMyk94bkoImYSnrvKIyTnaFEWR1We3BiVaupgGVcS8JS2tYxDBHnvxSxVi25tju2dBpYFTdE1ftnuLZf7T-3924vr0pnj4jdAL4NfSl03uEUfAxPq0x1eWwM-q7h3340kvyvxzkN81_VjOyy1tMzMIKdWZiqzG9WXW49Ig0nXAxpc5BeuOinYj5iDFYnW3U7zL0ywie9mDTOMvZEAsijQRBYMVpoHm7-5LsWYKzT7eAisNTbBLXPkfaSHWucMxqlI8ssI_Ro_BLMRVa0n8puIu2KC8u_kzdgonV9dto-PTo_WYHJonFs4QBahbH-8wDXyCTqu_Xiz2Rw_9e8-wT0AxNA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2005+IEEE+Computer+Society+Conference+on+Computer+Vision+and+Pattern+Recognition+%28CVPR%2705%29&rft.atitle=Object+class+recognition+by+boosting+a+part-based+model&rft.au=Bar-Hillel%2C+A.&rft.au=Hertz%2C+T.&rft.au=Weinshall%2C+D.&rft.date=2005-01-01&rft.pub=IEEE&rft.isbn=9780769523729&rft.issn=1063-6919&rft.eissn=1063-6919&rft.volume=1&rft.spage=702&rft.epage=709+vol.+1&rft_id=info:doi/10.1109%2FCVPR.2005.250&rft.externalDocID=1467337
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6919&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6919&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6919&client=summon