A Method of Rainfall Runoff Forecasting Based on Deep Convolution Neural Networks
The prediction of rainfall runoff is an ordinary function in hy-drological information process. As it bears the strong locality and nonlinearity, accurate prediction is challenging. In the pa-per a novel approach of rainfall runoff prediction based on con-volutional deep belief networks is proposed....
Saved in:
Published in | 2018 Sixth International Conference on Advanced Cloud and Big Data (CBD) pp. 304 - 310 |
---|---|
Main Authors | , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.08.2018
|
Subjects | |
Online Access | Get full text |
DOI | 10.1109/CBD.2018.00061 |
Cover
Abstract | The prediction of rainfall runoff is an ordinary function in hy-drological information process. As it bears the strong locality and nonlinearity, accurate prediction is challenging. In the pa-per a novel approach of rainfall runoff prediction based on con-volutional deep belief networks is proposed. The constructed deep learning machine better simulates the complex nonlinearity within data. Even if observation values are limited, it still main-tains very good prediction capability. The proposed model is tes-tified and validated in the Luo River Basin (Guangdong Prov-ince, China) for training and testing the prediction performance. At the same time, the traditional Xinanjiang rainfall runoff model was introduced to evaluate and compare results with the ones, made by the new model. Moreover, multiple forecasts (e.g. 1-day, 3-day or 5-day) achieved to demonstrate better model performance. The results prove that the currently proposed model could predict the runoff more accurately than the Xinan-jiang model. |
---|---|
AbstractList | The prediction of rainfall runoff is an ordinary function in hy-drological information process. As it bears the strong locality and nonlinearity, accurate prediction is challenging. In the pa-per a novel approach of rainfall runoff prediction based on con-volutional deep belief networks is proposed. The constructed deep learning machine better simulates the complex nonlinearity within data. Even if observation values are limited, it still main-tains very good prediction capability. The proposed model is tes-tified and validated in the Luo River Basin (Guangdong Prov-ince, China) for training and testing the prediction performance. At the same time, the traditional Xinanjiang rainfall runoff model was introduced to evaluate and compare results with the ones, made by the new model. Moreover, multiple forecasts (e.g. 1-day, 3-day or 5-day) achieved to demonstrate better model performance. The results prove that the currently proposed model could predict the runoff more accurately than the Xinan-jiang model. |
Author | Song, Guomei Li, Xiaoli Du, Zhenlong |
Author_xml | – sequence: 1 givenname: Xiaoli surname: Li fullname: Li, Xiaoli – sequence: 2 givenname: Zhenlong surname: Du fullname: Du, Zhenlong – sequence: 3 givenname: Guomei surname: Song fullname: Song, Guomei |
BookMark | eNotjMtOwzAQRY0EElCyZcPGP5Ay9sSxs2xTCkgFRNV95ThjCAS7yoOKvycSrI5079G5ZKchBmLsWsBcCChuy-VqLkGYOQDk4oQlhTZCockNYJafs6TvP6ZL5gYz0BfsdcGfaHiPNY-eb20TvG1bvh1D9J6vY0fO9kMT3vjS9jRJga-IDryM4Tu249BMwzONnW0nDMfYffZX7Gxq9JT8c8Z267td-ZBuXu4fy8UmbYRWQ-qVFlC5TGXOS6gqr6QRWheItZWgq8JZtE5ImdeEmSdEV3lAZ0XmlMtxxm7-sg0R7Q9d82W7n71RCEZp_AWJBk7F |
CODEN | IEEPAD |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/CBD.2018.00061 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISBN | 9781538680346 1538680343 |
EndPage | 310 |
ExternalDocumentID | 8530857 |
Genre | orig-research |
GroupedDBID | 6IE 6IF 6IL 6IN AAJGR AAWTH ABLEC ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK IEGSK OCL RIB RIC RIE RIL |
ID | FETCH-LOGICAL-i175t-f5710bc454cf20bbf528177933da207b9ca3ac1226de34fe33cbf03ca14c5c63 |
IEDL.DBID | RIE |
IngestDate | Wed Aug 27 02:51:12 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i175t-f5710bc454cf20bbf528177933da207b9ca3ac1226de34fe33cbf03ca14c5c63 |
PageCount | 7 |
ParticipantIDs | ieee_primary_8530857 |
PublicationCentury | 2000 |
PublicationDate | 2018-Aug |
PublicationDateYYYYMMDD | 2018-08-01 |
PublicationDate_xml | – month: 08 year: 2018 text: 2018-Aug |
PublicationDecade | 2010 |
PublicationTitle | 2018 Sixth International Conference on Advanced Cloud and Big Data (CBD) |
PublicationTitleAbbrev | CBD |
PublicationYear | 2018 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0002683407 |
Score | 1.7748461 |
Snippet | The prediction of rainfall runoff is an ordinary function in hy-drological information process. As it bears the strong locality and nonlinearity, accurate... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 304 |
SubjectTerms | Data models deep convolutional belief network Forecasting Mathematical model Neurons prediction Predictive models rainfall runoff Rivers |
Title | A Method of Rainfall Runoff Forecasting Based on Deep Convolution Neural Networks |
URI | https://ieeexplore.ieee.org/document/8530857 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEB5qT56qtuKbPXg0bZLdzeNoW0sRKioVeiv7BLEkxSYe_PXuJGkL4sFTlrDshn3wTWa--QbgNk0Zt3HCPAzyeUxE1Et1qD2bSGvjKJWJRof-7CmavrHHBV-04G6XC2OMqchnpo_NKpavc1Wiq2zgoAUF2Q_gwB2zOldr508Jo4S6n5NGlzHw08FoOEbqFnIl_UoDe189pQKPSQdm22lrzshHvyxkX33_UmT873cdQW-fpkeedwB0DC2TnUBnW6eBNNe2Cy_3ZFYViia5JRjQsWK1Iq9llltLsDanEhtkP5OhgzTXKSNjY9bEzfLVHEyCGh5i5R4VaXzTg_nkYT6aek0pBe_d2QeFZ7mzJKRinCkb-lJaHiZB7O4m1SL0Y5kqQYUKnC2mDWXWUKqk9akSAVNcRfQU2lmemTMgzoIMLOqeCTRdRJByw2XMbaC1G4TJc-jiAi3XtVjGslmbi79fX8IhblHNqLuCdvFZmmuH8oW8qbb3B5Dvp6Y |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8JAEJ4gHvSECsa3e_Booe3u9nEUkKACUYMJN7LPxEhaIq0Hf727bYHEePDUTdPsNrPdfNOZb74BuIljQnUYEccm-RzCAuzE0peOjrjWYRDzSNqA_ngSDN_I44zOanC7qYVRShXkM9W2wyKXL1OR21BZx0CLFWTfgV2D-4SW1VqbiIofRNj8nlTKjJ4bd3rdviVvWbakW6hgb_unFPAxaMB4vXDJGvlo5xlvi-9fmoz_fbMDaG0L9dDzBoIOoaaSI2isOzWg6uA24eUOjYtW0SjVyKZ0NFss0GuepFoj251TsJXlP6OuATXzUIL6Si2RWeWr-jSRVfFgC3MpaOOrFkwH99Pe0KmaKTjvxkPIHE2NL8GFsZvQvsu5pn7kheZ0Ysl8N-SxYJgJz3hjUmGiFcaCaxcL5hFBRYCPoZ6kiToBZHxIT1vlM2adF-bFVFEeUu1JaSYh_BSa1kDzZSmXMa9sc_b37WvYG07Ho_noYfJ0Dvt2u0p-3QXUs89cXRrMz_hVsdU_h3Cq8w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2018+Sixth+International+Conference+on+Advanced+Cloud+and+Big+Data+%28CBD%29&rft.atitle=A+Method+of+Rainfall+Runoff+Forecasting+Based+on+Deep+Convolution+Neural+Networks&rft.au=Li%2C+Xiaoli&rft.au=Du%2C+Zhenlong&rft.au=Song%2C+Guomei&rft.date=2018-08-01&rft.pub=IEEE&rft.spage=304&rft.epage=310&rft_id=info:doi/10.1109%2FCBD.2018.00061&rft.externalDocID=8530857 |