A Method of Rainfall Runoff Forecasting Based on Deep Convolution Neural Networks

The prediction of rainfall runoff is an ordinary function in hy-drological information process. As it bears the strong locality and nonlinearity, accurate prediction is challenging. In the pa-per a novel approach of rainfall runoff prediction based on con-volutional deep belief networks is proposed....

Full description

Saved in:
Bibliographic Details
Published in2018 Sixth International Conference on Advanced Cloud and Big Data (CBD) pp. 304 - 310
Main Authors Li, Xiaoli, Du, Zhenlong, Song, Guomei
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.08.2018
Subjects
Online AccessGet full text
DOI10.1109/CBD.2018.00061

Cover

Abstract The prediction of rainfall runoff is an ordinary function in hy-drological information process. As it bears the strong locality and nonlinearity, accurate prediction is challenging. In the pa-per a novel approach of rainfall runoff prediction based on con-volutional deep belief networks is proposed. The constructed deep learning machine better simulates the complex nonlinearity within data. Even if observation values are limited, it still main-tains very good prediction capability. The proposed model is tes-tified and validated in the Luo River Basin (Guangdong Prov-ince, China) for training and testing the prediction performance. At the same time, the traditional Xinanjiang rainfall runoff model was introduced to evaluate and compare results with the ones, made by the new model. Moreover, multiple forecasts (e.g. 1-day, 3-day or 5-day) achieved to demonstrate better model performance. The results prove that the currently proposed model could predict the runoff more accurately than the Xinan-jiang model.
AbstractList The prediction of rainfall runoff is an ordinary function in hy-drological information process. As it bears the strong locality and nonlinearity, accurate prediction is challenging. In the pa-per a novel approach of rainfall runoff prediction based on con-volutional deep belief networks is proposed. The constructed deep learning machine better simulates the complex nonlinearity within data. Even if observation values are limited, it still main-tains very good prediction capability. The proposed model is tes-tified and validated in the Luo River Basin (Guangdong Prov-ince, China) for training and testing the prediction performance. At the same time, the traditional Xinanjiang rainfall runoff model was introduced to evaluate and compare results with the ones, made by the new model. Moreover, multiple forecasts (e.g. 1-day, 3-day or 5-day) achieved to demonstrate better model performance. The results prove that the currently proposed model could predict the runoff more accurately than the Xinan-jiang model.
Author Song, Guomei
Li, Xiaoli
Du, Zhenlong
Author_xml – sequence: 1
  givenname: Xiaoli
  surname: Li
  fullname: Li, Xiaoli
– sequence: 2
  givenname: Zhenlong
  surname: Du
  fullname: Du, Zhenlong
– sequence: 3
  givenname: Guomei
  surname: Song
  fullname: Song, Guomei
BookMark eNotjMtOwzAQRY0EElCyZcPGP5Ay9sSxs2xTCkgFRNV95ThjCAS7yoOKvycSrI5079G5ZKchBmLsWsBcCChuy-VqLkGYOQDk4oQlhTZCockNYJafs6TvP6ZL5gYz0BfsdcGfaHiPNY-eb20TvG1bvh1D9J6vY0fO9kMT3vjS9jRJga-IDryM4Tu249BMwzONnW0nDMfYffZX7Gxq9JT8c8Z267td-ZBuXu4fy8UmbYRWQ-qVFlC5TGXOS6gqr6QRWheItZWgq8JZtE5ImdeEmSdEV3lAZ0XmlMtxxm7-sg0R7Q9d82W7n71RCEZp_AWJBk7F
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/CBD.2018.00061
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 9781538680346
1538680343
EndPage 310
ExternalDocumentID 8530857
Genre orig-research
GroupedDBID 6IE
6IF
6IL
6IN
AAJGR
AAWTH
ABLEC
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
IEGSK
OCL
RIB
RIC
RIE
RIL
ID FETCH-LOGICAL-i175t-f5710bc454cf20bbf528177933da207b9ca3ac1226de34fe33cbf03ca14c5c63
IEDL.DBID RIE
IngestDate Wed Aug 27 02:51:12 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-f5710bc454cf20bbf528177933da207b9ca3ac1226de34fe33cbf03ca14c5c63
PageCount 7
ParticipantIDs ieee_primary_8530857
PublicationCentury 2000
PublicationDate 2018-Aug
PublicationDateYYYYMMDD 2018-08-01
PublicationDate_xml – month: 08
  year: 2018
  text: 2018-Aug
PublicationDecade 2010
PublicationTitle 2018 Sixth International Conference on Advanced Cloud and Big Data (CBD)
PublicationTitleAbbrev CBD
PublicationYear 2018
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0002683407
Score 1.7748461
Snippet The prediction of rainfall runoff is an ordinary function in hy-drological information process. As it bears the strong locality and nonlinearity, accurate...
SourceID ieee
SourceType Publisher
StartPage 304
SubjectTerms Data models
deep convolutional belief network
Forecasting
Mathematical model
Neurons
prediction
Predictive models
rainfall runoff
Rivers
Title A Method of Rainfall Runoff Forecasting Based on Deep Convolution Neural Networks
URI https://ieeexplore.ieee.org/document/8530857
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEB5qT56qtuKbPXg0bZLdzeNoW0sRKioVeiv7BLEkxSYe_PXuJGkL4sFTlrDshn3wTWa--QbgNk0Zt3HCPAzyeUxE1Et1qD2bSGvjKJWJRof-7CmavrHHBV-04G6XC2OMqchnpo_NKpavc1Wiq2zgoAUF2Q_gwB2zOldr508Jo4S6n5NGlzHw08FoOEbqFnIl_UoDe189pQKPSQdm22lrzshHvyxkX33_UmT873cdQW-fpkeedwB0DC2TnUBnW6eBNNe2Cy_3ZFYViia5JRjQsWK1Iq9llltLsDanEhtkP5OhgzTXKSNjY9bEzfLVHEyCGh5i5R4VaXzTg_nkYT6aek0pBe_d2QeFZ7mzJKRinCkb-lJaHiZB7O4m1SL0Y5kqQYUKnC2mDWXWUKqk9akSAVNcRfQU2lmemTMgzoIMLOqeCTRdRJByw2XMbaC1G4TJc-jiAi3XtVjGslmbi79fX8IhblHNqLuCdvFZmmuH8oW8qbb3B5Dvp6Y
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8JAEJ4gHvSECsa3e_Booe3u9nEUkKACUYMJN7LPxEhaIq0Hf727bYHEePDUTdPsNrPdfNOZb74BuIljQnUYEccm-RzCAuzE0peOjrjWYRDzSNqA_ngSDN_I44zOanC7qYVRShXkM9W2wyKXL1OR21BZx0CLFWTfgV2D-4SW1VqbiIofRNj8nlTKjJ4bd3rdviVvWbakW6hgb_unFPAxaMB4vXDJGvlo5xlvi-9fmoz_fbMDaG0L9dDzBoIOoaaSI2isOzWg6uA24eUOjYtW0SjVyKZ0NFss0GuepFoj251TsJXlP6OuATXzUIL6Si2RWeWr-jSRVfFgC3MpaOOrFkwH99Pe0KmaKTjvxkPIHE2NL8GFsZvQvsu5pn7kheZ0Ysl8N-SxYJgJz3hjUmGiFcaCaxcL5hFBRYCPoZ6kiToBZHxIT1vlM2adF-bFVFEeUu1JaSYh_BSa1kDzZSmXMa9sc_b37WvYG07Ho_noYfJ0Dvt2u0p-3QXUs89cXRrMz_hVsdU_h3Cq8w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2018+Sixth+International+Conference+on+Advanced+Cloud+and+Big+Data+%28CBD%29&rft.atitle=A+Method+of+Rainfall+Runoff+Forecasting+Based+on+Deep+Convolution+Neural+Networks&rft.au=Li%2C+Xiaoli&rft.au=Du%2C+Zhenlong&rft.au=Song%2C+Guomei&rft.date=2018-08-01&rft.pub=IEEE&rft.spage=304&rft.epage=310&rft_id=info:doi/10.1109%2FCBD.2018.00061&rft.externalDocID=8530857