Object recognition with features inspired by visual cortex
We introduce a novel set of features for robust object recognition. Each element of this set is a complex feature obtained by combining position- and scale-tolerant edge-detectors over neighboring positions and multiple orientations. Our system's architecture is motivated by a quantitative mode...
Saved in:
Published in | 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05) Vol. 2; pp. 994 - 1000 vol. 2 |
---|---|
Main Authors | , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
2005
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We introduce a novel set of features for robust object recognition. Each element of this set is a complex feature obtained by combining position- and scale-tolerant edge-detectors over neighboring positions and multiple orientations. Our system's architecture is motivated by a quantitative model of visual cortex. We show that our approach exhibits excellent recognition performance and outperforms several state-of-the-art systems on a variety of image datasets including many different object categories. We also demonstrate that our system is able to learn from very few examples. The performance of the approach constitutes a suggestive plausibility proof for a class of feedforward models of object recognition in cortex. |
---|---|
AbstractList | We introduce a novel set of features for robust object recognition. Each element of this set is a complex feature obtained by combining position- and scale-tolerant edge-detectors over neighboring positions and multiple orientations. Our system's architecture is motivated by a quantitative model of visual cortex. We show that our approach exhibits excellent recognition performance and outperforms several state-of-the-art systems on a variety of image datasets including many different object categories. We also demonstrate that our system is able to learn from very few examples. The performance of the approach constitutes a suggestive plausibility proof for a class of feedforward models of object recognition in cortex. |
Author | Poggio, T. Serre, T. Wolf, L. |
Author_xml | – sequence: 1 givenname: T. surname: Serre fullname: Serre, T. organization: Dept. of Brain & Cognitive Sci., MIT, Cambridge, MA, USA – sequence: 2 givenname: L. surname: Wolf fullname: Wolf, L. organization: Dept. of Brain & Cognitive Sci., MIT, Cambridge, MA, USA – sequence: 3 givenname: T. surname: Poggio fullname: Poggio, T. organization: Dept. of Brain & Cognitive Sci., MIT, Cambridge, MA, USA |
BookMark | eNpNjMFKAzEUAINWsK09evKSH9g1ecnLZr1JsSoUKqJeS7L7oil1t2RTtX-voAfnMoeBmbBR13fE2LkUpZSivpy_PDyWIASWgPqIjaUwqjC1rI_ZRFSmRlAVwOhfOGWzYdiIH1StrIYxu1r5DTWZJ2r61y7m2Hf8M-Y3HsjlfaKBx27YxUQt9wf-EYe92_KmT5m-zthJcNuBZn-esufFzdP8rliubu_n18siygpzEVC3DowD26igUbiAFsA63YIB03psROXBk7POoDUgggpCeqdRV5awVlN28fuNRLTepfju0mEttakQpfoGKzBKVQ |
ContentType | Conference Proceeding |
DBID | 6IE 6IH CBEJK RIE RIO |
DOI | 10.1109/CVPR.2005.254 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Computer Science |
EISSN | 1063-6919 |
EndPage | 1000 vol. 2 |
ExternalDocumentID | 1467551 |
Genre | orig-research |
GroupedDBID | 23M 29F 29O 6IE 6IH 6IK ABDPE ACGFS ALMA_UNASSIGNED_HOLDINGS CBEJK IPLJI M43 RIE RIO RNS |
ID | FETCH-LOGICAL-i175t-f54da26a28c3f450af58228a4d2626db5c07b2bea8a658620f3f01ba45478e593 |
IEDL.DBID | RIE |
ISBN | 0769523722 9780769523729 |
ISSN | 1063-6919 |
IngestDate | Wed Aug 27 02:18:38 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i175t-f54da26a28c3f450af58228a4d2626db5c07b2bea8a658620f3f01ba45478e593 |
ParticipantIDs | ieee_primary_1467551 |
PublicationCentury | 2000 |
PublicationDate | 20050000 |
PublicationDateYYYYMMDD | 2005-01-01 |
PublicationDate_xml | – year: 2005 text: 20050000 |
PublicationDecade | 2000 |
PublicationTitle | 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05) |
PublicationTitleAbbrev | CVPR |
PublicationYear | 2005 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0000393842 ssj0023720 ssj0003211698 |
Score | 2.1984742 |
Snippet | We introduce a novel set of features for robust object recognition. Each element of this set is a complex feature obtained by combining position- and... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 994 |
SubjectTerms | Biology computing Brain modeling Face detection Geometry Image recognition Object detection Object recognition Robustness Shape Target recognition |
Title | Object recognition with features inspired by visual cortex |
URI | https://ieeexplore.ieee.org/document/1467551 |
Volume | 2 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEA61J09VW_FNDh7ddptN0o3XYhGhWsRKbyWPCRRlK3ZX1F9vkn0UxIO3zSws2ZCQb76Z-QahS00JTUAkEY-ljii3KkoNiyNwzogceXkR6SO603t-O6d3C7ZooaumFgYAQvIZ9P1jiOWbtS48VTbwp5r5eukd57iVtVoNn-JrTNPKzfPjxHk2XDQRBeK7sYTIJ3fzEkNRuvCC-RekUuKpx2IrxjkYP88eS-qFhJYB2xYs4QaadNC0nnuZePLSL3LV19-_ZB3_-3N7qLet9cOz5hbbRy3IDlCnAqe4OvobZ6r7P9S2Lrp-UJ7FwU0S0jrDntfFFoJc6AavMh_Id99RX_hjtSnkK9Y-u_ezh-aTm6fxbVT1YohWDmDkkWXUSMIlSXViKYulZQ5apJIa4lwio5iOR4ookKl0mIaT2CY2HioZ9MKAieQQtbN1BkcIU0u05FY4IAbUwEgwQygQJVIRAzB-jLp-dZZvpdzGslqYk7_Np2g3qKkGVuQMtfP3As4dTsjVRdggPwONs0Q |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTwIxEG4IHvTkA4xve_DowtJty9YrkaACEgOGG2l3pwnRLEZ2jfrrbbsPEuPB27abbLpNm_nmm5lvELqKKKEBiMDjvow8yrXywpj5HhhnRHatvIi0Ed3RmA9m9H7O5jV0XdXCAIBLPoOWfXSx_HgVZZYqa9tbzWy99Jax-4zk1VoVo2KrTMPC0bPjwPg2XFQxBWL7sbjYJzcrEx2RO_GC2Rek0OIpx2Ijx9nuPU-ecvKFuKYBmyYszgb1d9GoXH2eevLSylLVir5_CTv-9_f2UHNT7YcnlR3bRzVIDtBuAU9xcfnXZqrsAFHONdDNo7I8Dq7SkFYJtswu1uAEQ9d4mdhQvvmO-sIfy3UmX3Fk83s_m2jWv532Bl7RjcFbGoiReprRWBIuSRgFmjJfambARShpTIxTFCsW-V1FFMhQGlTDia8D7XeUdIphwERwiOrJKoEjhKkmkeRaGCgGNIauYDGhQJQIhQ_A-DFq2N1ZvOWCG4tiY07-nr5E24PpaLgY3o0fTtGO01Z1HMkZqqfvGZwb1JCqC3dYfgCYi7aO |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2005+IEEE+Computer+Society+Conference+on+Computer+Vision+and+Pattern+Recognition+%28CVPR%2705%29&rft.atitle=Object+recognition+with+features+inspired+by+visual+cortex&rft.au=Serre%2C+T.&rft.au=Wolf%2C+L.&rft.au=Poggio%2C+T.&rft.date=2005-01-01&rft.pub=IEEE&rft.isbn=9780769523729&rft.issn=1063-6919&rft.eissn=1063-6919&rft.volume=2&rft.spage=994&rft.epage=1000+vol.+2&rft_id=info:doi/10.1109%2FCVPR.2005.254&rft.externalDocID=1467551 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6919&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6919&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6919&client=summon |