PIXOR: Real-time 3D Object Detection from Point Clouds
We address the problem of real-time 3D object detection from point clouds in the context of autonomous driving. Speed is critical as detection is a necessary component for safety. Existing approaches are, however, expensive in computation due to high dimensionality of point clouds. We utilize the 3D...
Saved in:
Published in | 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition pp. 7652 - 7660 |
---|---|
Main Authors | , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.06.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We address the problem of real-time 3D object detection from point clouds in the context of autonomous driving. Speed is critical as detection is a necessary component for safety. Existing approaches are, however, expensive in computation due to high dimensionality of point clouds. We utilize the 3D data more efficiently by representing the scene from the Bird's Eye View (BEV), and propose PIXOR, a proposal-free, single-stage detector that outputs oriented 3D object estimates decoded from pixel-wise neural network predictions. The input representation, network architecture, and model optimization are specially designed to balance high accuracy and real-time efficiency. We validate PIXOR on two datasets: the KITTI BEV object detection benchmark, and a large-scale 3D vehicle detection benchmark. In both datasets we show that the proposed detector surpasses other state-of-the-art methods notably in terms of Average Precision (AP), while still runs at 10 FPS. |
---|---|
AbstractList | We address the problem of real-time 3D object detection from point clouds in the context of autonomous driving. Speed is critical as detection is a necessary component for safety. Existing approaches are, however, expensive in computation due to high dimensionality of point clouds. We utilize the 3D data more efficiently by representing the scene from the Bird's Eye View (BEV), and propose PIXOR, a proposal-free, single-stage detector that outputs oriented 3D object estimates decoded from pixel-wise neural network predictions. The input representation, network architecture, and model optimization are specially designed to balance high accuracy and real-time efficiency. We validate PIXOR on two datasets: the KITTI BEV object detection benchmark, and a large-scale 3D vehicle detection benchmark. In both datasets we show that the proposed detector surpasses other state-of-the-art methods notably in terms of Average Precision (AP), while still runs at 10 FPS. |
Author | Luo, Wenjie Urtasun, Raquel Yang, Bin |
Author_xml | – sequence: 1 givenname: Bin surname: Yang fullname: Yang, Bin – sequence: 2 givenname: Wenjie surname: Luo fullname: Luo, Wenjie – sequence: 3 givenname: Raquel surname: Urtasun fullname: Urtasun, Raquel |
BookMark | eNotzMtKw0AUANBRFKw1axdu5gcS7507T3eSVi0UEoKKuzJJJjClSSSJC_9eQVdnd67ZxTAOgbFbhAwR3H3-XlaZALQZgHH2jCXOWFRktZYC3DlbIWhKtUN3xZJ5PgKA0JasVCumy91HUT3wKvhTusQ-cNrwoj6GZuGbsPwSx4F309jzcozDwvPT-NXON-yy86c5JP-u2dvT9jV_SffF8y5_3KcRjVrSTrZaKyQlGyc7UkCNbEyrCVrhrBNYe2WJRBecR2MkkDGqdh2Sh7axgdbs7u-NIYTD5xR7P30frDLWOk0_N_ZFTA |
CODEN | IEEPAD |
ContentType | Conference Proceeding |
DBID | 6IE 6IH CBEJK RIE RIO |
DOI | 10.1109/CVPR.2018.00798 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Xplore IEEE Proceedings Order Plans (POP) 1998-present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences |
EISBN | 9781538664209 1538664208 |
EISSN | 1063-6919 |
EndPage | 7660 |
ExternalDocumentID | 8578896 |
Genre | orig-research |
GroupedDBID | 6IE 6IH 6IL 6IN AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IJVOP OCL RIE RIL RIO |
ID | FETCH-LOGICAL-i175t-f4d6651354c94f3503c4c7d630d298921ba58332fe9a177403775b9f13a0dc8e3 |
IEDL.DBID | RIE |
IngestDate | Wed Aug 27 02:52:15 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i175t-f4d6651354c94f3503c4c7d630d298921ba58332fe9a177403775b9f13a0dc8e3 |
PageCount | 9 |
ParticipantIDs | ieee_primary_8578896 |
PublicationCentury | 2000 |
PublicationDate | 2018-Jun |
PublicationDateYYYYMMDD | 2018-06-01 |
PublicationDate_xml | – month: 06 year: 2018 text: 2018-Jun |
PublicationDecade | 2010 |
PublicationTitle | 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition |
PublicationTitleAbbrev | CVPR |
PublicationYear | 2018 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0002683845 ssj0003211698 |
Score | 2.6203012 |
Snippet | We address the problem of real-time 3D object detection from point clouds in the context of autonomous driving. Speed is critical as detection is a necessary... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 7652 |
SubjectTerms | Computer architecture Detectors Feature extraction Object detection Real-time systems Three-dimensional displays Two dimensional displays |
Title | PIXOR: Real-time 3D Object Detection from Point Clouds |
URI | https://ieeexplore.ieee.org/document/8578896 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwED21TEwFWsS3PDCSNokdx2ZtqQpSaVRR1K2qY1uqQAmiycKvx5eEIhADUxJPJ3_k3p3fuwO41lRG2sXJHvetC1C4ZJ4KfepZoYWlgaVaYaA4feSTBXtYRssW3Oy0MMaYinxm-vha3eXrPC0xVTYQbnsJydvQds9aq7XLp4RcUNHckOE3dZENl6Kp5hP4cjB8TubI5ULyZCzFj3YqlTcZd2D6ZUdNInnpl4Xqpx-_SjT-19AD6H3r9kiy80iH0DLZEXQaoEmaY7ztAk_ul7P5LZk7lOhhd3lCR2SmMCVDRqao2FkZQeUJSfJNVpDha17qbQ8W47un4cRrGih4G4cKCs8yzXkU0Iilklka-TRlaaw59TUWXg8DtUbRVWiNXAcOB_o0jiMlbUDXvk6Focewl-WZOQHCrDCxxD-AVoxj28m1NaHDE4ESOpb2FLo4Dau3ukbGqpmBs7-Hz2EfF6KmXF3AXvFemkvn3At1Va3qJ71Ln4U |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED6VMsBUoEW88cBI2iR2HJu1BbXQR1S1qFtVx7ZUgRJEk4Vfj52EIhADm-3J8uu-O3_fHcCNxDyQxk92qKuNg0I5cYTvYkczyTT2NJbCOoqjMe3PyeMiWNTgdquFUUoV5DPVts3iL1-mcW5DZR1mjhfjdAd2jd0PvFKttY2o-JRhVv2R2T42vg3lrMrn47m8032OppbNZemTIWc_CqoU9uShAaOvmZQ0kpd2nol2_PErSeN_p3oArW_lHoq2NukQaio5gkYFNVF1kTdNoNFgMZneoanBiY6tL49wD02EDcqgnsoKflaCrPYERek6yVD3Nc3lpgXzh_tZt-9UJRSctcEFmaOJpDTwcEBiTjQOXByTOJQUu9KmXvc9sbKyK18rvvIMEnRxGAaCaw-vXBkzhY-hnqSJOgFENFMht2-AFITawpMrrXyDKDzBZMj1KTTtMizfyiwZy2oFzv4evoa9_mw0XA4H46dz2LebUhKwLqCevefq0pj6TFwVO_wJRwKizg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2018+IEEE%2FCVF+Conference+on+Computer+Vision+and+Pattern+Recognition&rft.atitle=PIXOR%3A+Real-time+3D+Object+Detection+from+Point+Clouds&rft.au=Yang%2C+Bin&rft.au=Luo%2C+Wenjie&rft.au=Urtasun%2C+Raquel&rft.date=2018-06-01&rft.pub=IEEE&rft.eissn=1063-6919&rft.spage=7652&rft.epage=7660&rft_id=info:doi/10.1109%2FCVPR.2018.00798&rft.externalDocID=8578896 |