PIXOR: Real-time 3D Object Detection from Point Clouds

We address the problem of real-time 3D object detection from point clouds in the context of autonomous driving. Speed is critical as detection is a necessary component for safety. Existing approaches are, however, expensive in computation due to high dimensionality of point clouds. We utilize the 3D...

Full description

Saved in:
Bibliographic Details
Published in2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition pp. 7652 - 7660
Main Authors Yang, Bin, Luo, Wenjie, Urtasun, Raquel
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.06.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We address the problem of real-time 3D object detection from point clouds in the context of autonomous driving. Speed is critical as detection is a necessary component for safety. Existing approaches are, however, expensive in computation due to high dimensionality of point clouds. We utilize the 3D data more efficiently by representing the scene from the Bird's Eye View (BEV), and propose PIXOR, a proposal-free, single-stage detector that outputs oriented 3D object estimates decoded from pixel-wise neural network predictions. The input representation, network architecture, and model optimization are specially designed to balance high accuracy and real-time efficiency. We validate PIXOR on two datasets: the KITTI BEV object detection benchmark, and a large-scale 3D vehicle detection benchmark. In both datasets we show that the proposed detector surpasses other state-of-the-art methods notably in terms of Average Precision (AP), while still runs at 10 FPS.
AbstractList We address the problem of real-time 3D object detection from point clouds in the context of autonomous driving. Speed is critical as detection is a necessary component for safety. Existing approaches are, however, expensive in computation due to high dimensionality of point clouds. We utilize the 3D data more efficiently by representing the scene from the Bird's Eye View (BEV), and propose PIXOR, a proposal-free, single-stage detector that outputs oriented 3D object estimates decoded from pixel-wise neural network predictions. The input representation, network architecture, and model optimization are specially designed to balance high accuracy and real-time efficiency. We validate PIXOR on two datasets: the KITTI BEV object detection benchmark, and a large-scale 3D vehicle detection benchmark. In both datasets we show that the proposed detector surpasses other state-of-the-art methods notably in terms of Average Precision (AP), while still runs at 10 FPS.
Author Luo, Wenjie
Urtasun, Raquel
Yang, Bin
Author_xml – sequence: 1
  givenname: Bin
  surname: Yang
  fullname: Yang, Bin
– sequence: 2
  givenname: Wenjie
  surname: Luo
  fullname: Luo, Wenjie
– sequence: 3
  givenname: Raquel
  surname: Urtasun
  fullname: Urtasun, Raquel
BookMark eNotzMtKw0AUANBRFKw1axdu5gcS7507T3eSVi0UEoKKuzJJJjClSSSJC_9eQVdnd67ZxTAOgbFbhAwR3H3-XlaZALQZgHH2jCXOWFRktZYC3DlbIWhKtUN3xZJ5PgKA0JasVCumy91HUT3wKvhTusQ-cNrwoj6GZuGbsPwSx4F309jzcozDwvPT-NXON-yy86c5JP-u2dvT9jV_SffF8y5_3KcRjVrSTrZaKyQlGyc7UkCNbEyrCVrhrBNYe2WJRBecR2MkkDGqdh2Sh7axgdbs7u-NIYTD5xR7P30frDLWOk0_N_ZFTA
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/CVPR.2018.00798
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Xplore
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISBN 9781538664209
1538664208
EISSN 1063-6919
EndPage 7660
ExternalDocumentID 8578896
Genre orig-research
GroupedDBID 6IE
6IH
6IL
6IN
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IJVOP
OCL
RIE
RIL
RIO
ID FETCH-LOGICAL-i175t-f4d6651354c94f3503c4c7d630d298921ba58332fe9a177403775b9f13a0dc8e3
IEDL.DBID RIE
IngestDate Wed Aug 27 02:52:15 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-f4d6651354c94f3503c4c7d630d298921ba58332fe9a177403775b9f13a0dc8e3
PageCount 9
ParticipantIDs ieee_primary_8578896
PublicationCentury 2000
PublicationDate 2018-Jun
PublicationDateYYYYMMDD 2018-06-01
PublicationDate_xml – month: 06
  year: 2018
  text: 2018-Jun
PublicationDecade 2010
PublicationTitle 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition
PublicationTitleAbbrev CVPR
PublicationYear 2018
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0002683845
ssj0003211698
Score 2.6203012
Snippet We address the problem of real-time 3D object detection from point clouds in the context of autonomous driving. Speed is critical as detection is a necessary...
SourceID ieee
SourceType Publisher
StartPage 7652
SubjectTerms Computer architecture
Detectors
Feature extraction
Object detection
Real-time systems
Three-dimensional displays
Two dimensional displays
Title PIXOR: Real-time 3D Object Detection from Point Clouds
URI https://ieeexplore.ieee.org/document/8578896
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwED21TEwFWsS3PDCSNokdx2ZtqQpSaVRR1K2qY1uqQAmiycKvx5eEIhADUxJPJ3_k3p3fuwO41lRG2sXJHvetC1C4ZJ4KfepZoYWlgaVaYaA4feSTBXtYRssW3Oy0MMaYinxm-vha3eXrPC0xVTYQbnsJydvQds9aq7XLp4RcUNHckOE3dZENl6Kp5hP4cjB8TubI5ULyZCzFj3YqlTcZd2D6ZUdNInnpl4Xqpx-_SjT-19AD6H3r9kiy80iH0DLZEXQaoEmaY7ztAk_ul7P5LZk7lOhhd3lCR2SmMCVDRqao2FkZQeUJSfJNVpDha17qbQ8W47un4cRrGih4G4cKCs8yzXkU0Iilklka-TRlaaw59TUWXg8DtUbRVWiNXAcOB_o0jiMlbUDXvk6Focewl-WZOQHCrDCxxD-AVoxj28m1NaHDE4ESOpb2FLo4Dau3ukbGqpmBs7-Hz2EfF6KmXF3AXvFemkvn3At1Va3qJ71Ln4U
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED6VMsBUoEW88cBI2iR2HJu1BbXQR1S1qFtVx7ZUgRJEk4Vfj52EIhADm-3J8uu-O3_fHcCNxDyQxk92qKuNg0I5cYTvYkczyTT2NJbCOoqjMe3PyeMiWNTgdquFUUoV5DPVts3iL1-mcW5DZR1mjhfjdAd2jd0PvFKttY2o-JRhVv2R2T42vg3lrMrn47m8032OppbNZemTIWc_CqoU9uShAaOvmZQ0kpd2nol2_PErSeN_p3oArW_lHoq2NukQaio5gkYFNVF1kTdNoNFgMZneoanBiY6tL49wD02EDcqgnsoKflaCrPYERek6yVD3Nc3lpgXzh_tZt-9UJRSctcEFmaOJpDTwcEBiTjQOXByTOJQUu9KmXvc9sbKyK18rvvIMEnRxGAaCaw-vXBkzhY-hnqSJOgFENFMht2-AFITawpMrrXyDKDzBZMj1KTTtMizfyiwZy2oFzv4evoa9_mw0XA4H46dz2LebUhKwLqCevefq0pj6TFwVO_wJRwKizg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2018+IEEE%2FCVF+Conference+on+Computer+Vision+and+Pattern+Recognition&rft.atitle=PIXOR%3A+Real-time+3D+Object+Detection+from+Point+Clouds&rft.au=Yang%2C+Bin&rft.au=Luo%2C+Wenjie&rft.au=Urtasun%2C+Raquel&rft.date=2018-06-01&rft.pub=IEEE&rft.eissn=1063-6919&rft.spage=7652&rft.epage=7660&rft_id=info:doi/10.1109%2FCVPR.2018.00798&rft.externalDocID=8578896