A feature extraction algorithm based on 2D complexity of gabor wavelets transform for facial expression recognition

Facial expression recognition is one of challenging topic in image processing. In this paper, a new feature extraction algorithm is proposed for facial expression recognition, in which Gabor filter is combined with 2D complexity for feature extraction. In order to obtain information of texture of ex...

Full description

Saved in:
Bibliographic Details
Published in2012 5th International Congress on Image and Signal Processing pp. 392 - 396
Main Authors Lijuan Fan, Qingxiang Wu, Chengmei Ruan, Zhiqiang Zhuo, Xiaowei Wang
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.10.2012
Subjects
Online AccessGet full text
ISBN9781467309653
1467309656
DOI10.1109/CISP.2012.6469877

Cover

Loading…
Abstract Facial expression recognition is one of challenging topic in image processing. In this paper, a new feature extraction algorithm is proposed for facial expression recognition, in which Gabor filter is combined with 2D complexity for feature extraction. In order to obtain information of texture of expression in a static gray image, the image is transformed to sub images by Gabor wavelet after considerable pretreatment, and then the complexities of sub images are calculated. Fast Principle component analysis (Fast-Pca) is used to reduce the dimensionality of 2D complexity of the sub images and the effectiveness of characteristic vector is tested through an learning vector quantization (LVQ) classifier. The proposed feature extraction algorithm has been successfully applied to the Japanese Female Facial Expression (JAFFE) database with 213 frontal images corresponding 10 different subjects. The images are acquired under variable illumination. Experimental results show that the proposed algorithm obtains low-dimension of features compared with traditional method and expression recognition accuracy is improved.
AbstractList Facial expression recognition is one of challenging topic in image processing. In this paper, a new feature extraction algorithm is proposed for facial expression recognition, in which Gabor filter is combined with 2D complexity for feature extraction. In order to obtain information of texture of expression in a static gray image, the image is transformed to sub images by Gabor wavelet after considerable pretreatment, and then the complexities of sub images are calculated. Fast Principle component analysis (Fast-Pca) is used to reduce the dimensionality of 2D complexity of the sub images and the effectiveness of characteristic vector is tested through an learning vector quantization (LVQ) classifier. The proposed feature extraction algorithm has been successfully applied to the Japanese Female Facial Expression (JAFFE) database with 213 frontal images corresponding 10 different subjects. The images are acquired under variable illumination. Experimental results show that the proposed algorithm obtains low-dimension of features compared with traditional method and expression recognition accuracy is improved.
Author Lijuan Fan
Chengmei Ruan
Zhiqiang Zhuo
Qingxiang Wu
Xiaowei Wang
Author_xml – sequence: 1
  surname: Lijuan Fan
  fullname: Lijuan Fan
  organization: Coll. of Photonic & Electron. Eng., Fujian Normal Univ., Fuzhou, China
– sequence: 2
  surname: Qingxiang Wu
  fullname: Qingxiang Wu
  organization: Coll. of Photonic & Electron. Eng., Fujian Normal Univ., Fuzhou, China
– sequence: 3
  surname: Chengmei Ruan
  fullname: Chengmei Ruan
  organization: Coll. of Photonic & Electron. Eng., Fujian Normal Univ., Fuzhou, China
– sequence: 4
  surname: Zhiqiang Zhuo
  fullname: Zhiqiang Zhuo
  organization: Coll. of Photonic & Electron. Eng., Fujian Normal Univ., Fuzhou, China
– sequence: 5
  surname: Xiaowei Wang
  fullname: Xiaowei Wang
  organization: Coll. of Photonic & Electron. Eng., Fujian Normal Univ., Fuzhou, China
BookMark eNpVkMFOwzAQRI0ACSj9AMTFP9Bix8k6PlaFQqVKIAHnapOsi1ESV7aB9u9JRS9cZjQjzTvMFTvrfU-M3UgxlVKYu_ny9WWaCZlNIQdTan3CxkaXMgethAFlTv_lQl2wcYyfQohhDhnklyzOuCVMX4E47VLAOjnfc2w3Prj00fEKIzV8qLJ7Xvtu29LOpT33lm-w8oH_4De1lCIftn20PnR8EG6xdtgOyG2gGA_IQLXf9O6Av2bnFttI46OP2Pvi4W3-NFk9Py7ns9XESV2kiZVYEoiiaFBYU5e6tMY00BRaWhg6UclKaZVBgRJNbbUxosJMg7Q6twBqxG7_uI6I1tvgOgz79fEq9Qu2KGBo
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/CISP.2012.6469877
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781467309639
146730963X
1467309648
9781467309646
EndPage 396
ExternalDocumentID 6469877
Genre orig-research
GroupedDBID 6IE
6IF
6IK
6IL
6IN
AAJGR
AAWTH
ADFMO
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
IEGSK
IERZE
OCL
RIE
RIL
ID FETCH-LOGICAL-i175t-f1a8e6055da0f9c878f99d6d571f6da00b1b373265a1a9cf7990ba2761f74f663
IEDL.DBID RIE
ISBN 9781467309653
1467309656
IngestDate Wed Aug 27 04:23:23 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-f1a8e6055da0f9c878f99d6d571f6da00b1b373265a1a9cf7990ba2761f74f663
PageCount 5
ParticipantIDs ieee_primary_6469877
PublicationCentury 2000
PublicationDate 2012-Oct.
PublicationDateYYYYMMDD 2012-10-01
PublicationDate_xml – month: 10
  year: 2012
  text: 2012-Oct.
PublicationDecade 2010
PublicationTitle 2012 5th International Congress on Image and Signal Processing
PublicationTitleAbbrev CISP
PublicationYear 2012
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0001106264
Score 1.5138645
Snippet Facial expression recognition is one of challenging topic in image processing. In this paper, a new feature extraction algorithm is proposed for facial...
SourceID ieee
SourceType Publisher
StartPage 392
SubjectTerms Complexity theory
Covariance matrix
Face
Face recognition
Fast Principle component analysis
Feature extraction
Gabor wavelets
Kernel
LVQ classifier
Two-dimensional complexity
Wavelet transforms
Title A feature extraction algorithm based on 2D complexity of gabor wavelets transform for facial expression recognition
URI https://ieeexplore.ieee.org/document/6469877
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NSwMxEA21J08qrfjNHDy62_1Oc5RqqUKloIXeSrKbqUXdlXaL4q93kt22KB68LLtzCCE75L1J3swwdhlxwq04kQ5hB3dMb1tHdAV3MA0J8EUspDTZyMOHZDCO7ifxpMGuNrkwWmsrPtOuebV3-VmRrsxRWScx7Q4532E75GZVrtb2PIViGwJ3m7uVkNsKIirrkk71d1jfavqe6PTuHkdG2BW49aA_uqtYcOnvseF6WpWm5MVdlcpNv35VbPzvvPdZe5vGB6MNQB2whs5bbHkNqG01T6B9eVHlNYB8nRWLefn8BgbWMiBTcANWb64_iahDgTAz_gIf0rSqKJdQrikv0ANQmrN3GrIW1uawkSYVeZuN-7dPvYFTd15w5kQnSgd92dUU6MSZ9FCkXd5FIbIki7mPCdk85auQE_OLpS9FipwwTcmAJz7yCInEHLJmXuT6iAF6ISLFJJGypQhpT_O4jlWahV6g_ACPWcss2PS9Kq4xrdfq5G_zKds1P61S052xZrlY6XNiBaW6sO7wDSbRtDE
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFG4QD3pSA8bf9uDRjf3quh4NSkCBkAgJN9JuLRJ0MzCi8a_3tRsQjQcvy_YOTdO99Pte-733ELoJKOAWCbkF2EEt3dvWYhGjlop9AHxGGOc6G7nXD9uj4HFMxhV0u8mFkVIa8Zm09au5y0-yeKWPyhqhbndI6Q7aBdwPSJGttT1RgegG4N1kb4XguAyoyrqoU_ntl_earsMazc7zQEu7PLsc9kd_FQMvrQPUW0-sUJXM7VUu7PjrV83G_878ENW3iXx4sIGoI1SRaQ0t77CSpp4nhp15UWQ2YP46zRaz_OUNa2BLMJi8e2wU5_ITqDrOFJ5qj8EfXDeryJc4X5NeDA-suD59hyFLaW2KN-KkLK2jUeth2GxbZe8FawaEIreUyyMJoQ5JuKNYHNFIMZaECaGuCsHmCFf4FLgf4S5nsaKAaoJ7NHQVDRTQmGNUTbNUniCsHF8piEoCYYoRwq7mUElEnPiOJ1xPnaKaXrDJe1FeY1Ku1dnf5mu01x72upNup_90jvb1Dyy0dReomi9W8hI4Qi6ujGt8A8Vst34
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2012+5th+International+Congress+on+Image+and+Signal+Processing&rft.atitle=A+feature+extraction+algorithm+based+on+2D+complexity+of+gabor+wavelets+transform+for+facial+expression+recognition&rft.au=Lijuan+Fan&rft.au=Qingxiang+Wu&rft.au=Chengmei+Ruan&rft.au=Zhiqiang+Zhuo&rft.date=2012-10-01&rft.pub=IEEE&rft.isbn=9781467309653&rft.spage=392&rft.epage=396&rft_id=info:doi/10.1109%2FCISP.2012.6469877&rft.externalDocID=6469877
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781467309653/lc.gif&client=summon&freeimage=true
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781467309653/mc.gif&client=summon&freeimage=true
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781467309653/sc.gif&client=summon&freeimage=true