Improving Collective I/O Performance Using Non-volatile Memory Devices
Collective I/O is a parallel I/O technique designed to deliver high performance data access to scientific applications running on high-end computing clusters. In collective I/O, write performance is highly dependent upon the storage system response time and limited by the slowest writer. The storage...
Saved in:
Published in | 2016 IEEE International Conference on Cluster Computing (CLUSTER) pp. 120 - 129 |
---|---|
Main Authors | , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.09.2016
|
Subjects | |
Online Access | Get full text |
ISSN | 2168-9253 |
DOI | 10.1109/CLUSTER.2016.37 |
Cover
Abstract | Collective I/O is a parallel I/O technique designed to deliver high performance data access to scientific applications running on high-end computing clusters. In collective I/O, write performance is highly dependent upon the storage system response time and limited by the slowest writer. The storage system response time in conjunction with the need for global synchronisation, required during every round of data exchange and write, severely impacts collective I/O performance. Future Exascale systems will have an increasing number of processor cores, while the number of storage servers will remain relatively small. Therefore, the storage system concurrency level will further increase, worsening the global synchronisation problem. Nowadays high performance computing nodes also have access to locally attached solid state drives, effectively providing an additional tier in the storage hierarchy. Unfortunately, this tier is not always fully integrated. In this paper we propose a set of MPI-IO hints extensions that enable users to take advantage of fast, locally attached storage devices to boost collective I/O performance by increasing parallelism and reducing global synchronisation impact in the ROMIO implementation. We demonstrate that by using local storage resources, collective write performance can be greatly improved compared to the case in which only the global parallel file system is used, but can also decrease if the ratio between aggregators and compute nodes is too small. |
---|---|
AbstractList | Collective I/O is a parallel I/O technique designed to deliver high performance data access to scientific applications running on high-end computing clusters. In collective I/O, write performance is highly dependent upon the storage system response time and limited by the slowest writer. The storage system response time in conjunction with the need for global synchronisation, required during every round of data exchange and write, severely impacts collective I/O performance. Future Exascale systems will have an increasing number of processor cores, while the number of storage servers will remain relatively small. Therefore, the storage system concurrency level will further increase, worsening the global synchronisation problem. Nowadays high performance computing nodes also have access to locally attached solid state drives, effectively providing an additional tier in the storage hierarchy. Unfortunately, this tier is not always fully integrated. In this paper we propose a set of MPI-IO hints extensions that enable users to take advantage of fast, locally attached storage devices to boost collective I/O performance by increasing parallelism and reducing global synchronisation impact in the ROMIO implementation. We demonstrate that by using local storage resources, collective write performance can be greatly improved compared to the case in which only the global parallel file system is used, but can also decrease if the ratio between aggregators and compute nodes is too small. |
Author | Brinkmann, Andre Congiu, Giuseppe Suss, Tim Narasimhamurthy, Sai |
Author_xml | – sequence: 1 givenname: Giuseppe surname: Congiu fullname: Congiu, Giuseppe email: giuseppe.congiu@seagate.com organization: Emerging Technol. Group Seagate Syst. Ltd., Havant, UK – sequence: 2 givenname: Sai surname: Narasimhamurthy fullname: Narasimhamurthy, Sai email: sai.narasimhamurthy@seagate.com organization: Emerging Technol. Group Seagate Syst. Ltd., Havant, UK – sequence: 3 givenname: Tim surname: Suss fullname: Suss, Tim email: t.suess@uni-mainz.de organization: Zentrum fur Datenverarbeitung Johannes Gutenberg, Univ. Mainz, Mainz, Germany – sequence: 4 givenname: Andre surname: Brinkmann fullname: Brinkmann, Andre email: brinkman@uni-mainz.de organization: Zentrum fur Datenverarbeitung Johannes Gutenberg, Univ. Mainz, Mainz, Germany |
BookMark | eNotzM1Kw0AUQOFRFGxr1y7c5AWS3jvj_C0lthqIVrRZlyG5IyNJpiQh0LcX0dXZfJwlu-pjT4zdIWSIYDd5WX0eth8ZB1SZ0BdsiRIsCCWFvWQLjsqklktxw9bj-A0AaJVBaxdsV3SnIc6h_0ry2LZUT2GmpNjsk3cafBw619eUVOMveIt9OsfWTaGl5JW6OJyTJ5pDTeMtu_auHWn93xWrdttD_pKW--cifyzTgFpOqUdnsCFSulacQErtGysUIYDwXkvupa21aRqgGrjhTqL1DXhLZCySFit2__cNRHQ8DaFzw_motVYPRoofkI5NXg |
CODEN | IEEPAD |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/CLUSTER.2016.37 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISBN | 1509036539 9781509036530 |
EISSN | 2168-9253 |
EndPage | 129 |
ExternalDocumentID | 7776485 |
Genre | orig-research |
GroupedDBID | 29O 6IE 6IF 6IH 6IK 6IL 6IN AAJGR AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IPLJI M43 OCL RIE RIL RNS |
ID | FETCH-LOGICAL-i175t-f1a81dee67c62e0557fd936e1003ff752f59c78dd0ec0282a519fd0f9ee891e73 |
IEDL.DBID | RIE |
IngestDate | Wed Aug 27 02:43:56 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i175t-f1a81dee67c62e0557fd936e1003ff752f59c78dd0ec0282a519fd0f9ee891e73 |
PageCount | 10 |
ParticipantIDs | ieee_primary_7776485 |
PublicationCentury | 2000 |
PublicationDate | 2016-Sept. |
PublicationDateYYYYMMDD | 2016-09-01 |
PublicationDate_xml | – month: 09 year: 2016 text: 2016-Sept. |
PublicationDecade | 2010 |
PublicationTitle | 2016 IEEE International Conference on Cluster Computing (CLUSTER) |
PublicationTitleAbbrev | CLUSTR |
PublicationYear | 2016 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0001968199 ssj0037306 |
Score | 2.1024764 |
Snippet | Collective I/O is a parallel I/O technique designed to deliver high performance data access to scientific applications running on high-end computing clusters.... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 120 |
SubjectTerms | Bandwidth Collective I/O HPC Layout Memory management MPI-IO Non-Volatile Memory Nonvolatile memory Performance evaluation Servers Synchronization |
Title | Improving Collective I/O Performance Using Non-volatile Memory Devices |
URI | https://ieeexplore.ieee.org/document/7776485 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8NADLbaTkwFWsRbNzCSNM97zIWqIFoqQaVuVZPzSQiUIpQM8OvxXdJWIAa2KNPJvnyf7Xy2Aa7sOgdi1cCTXKOX6Ihw0ETSMyaVKg8jobRNFCdTPp4n94t00YLrbS8MIjrxGfr20f3L1-u8sqWygRCCJzJtQ5uuWd2rtaunKE7kpjYoHNPN5c0onzBQg-HD_IniQ6vl4n78c5eKo5JRFyabQ9QKkle_KjM___o1n_G_p9yH_q5pj822dHQALSwOobvZ2sCaj7gHo20dgbmqgQM8djd4ZLNdEwFzUgI2XRce4Rd57w3ZxIpyP9kNOnDpw3x0-zwce802Be-FQoTSM-GKYlNELnIeoR29ZbSKOYZkLGNEGplU5UJqHWBuE7EVxXZGB0YhShWiiI-gU6wLPAaW5oYCkSTETOgkU4nEjBInYVtNTBKsshPoWbMs3-uBGcvGIqd_vz6DPeuVWrh1Dp3yo8ILYvoyu3Qu_gYGN6eH |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwED2VMsBUoEV844GRpPlw7HguVC00pRKt1K1q4rOEQAlC6QC_HttJW4EY2CJP1l3y3t3l3R3AjVnnoFnVc2Im0aEy0DiogthRKopF5gdcSJMoJmM2mNGHeTRvwO2mFwYRrfgMXfNo_-XLIluZUlmXc85oHO3AruZ9GlXdWtuKimCa3sQah0P97rJ6mI_viW5vNHvWEaJRczE3_LlNxZJJvwXJ-hqVhuTVXZWpm339mtD433seQGfbtkcmG0I6hAbmR9Ba720g9Wfchv6mkkBs3cBCHhl2n8hk20ZArJiAjIvc0Qim_feGJDGy3E9yhxZeOjDr3097A6fep-C86CChdJS_1NEpIuMZC9AM31JShAx9bSyleBSoSGQ8ltLDzKRiSx3dKekpgRgLH3l4DM28yPEESJQpHYpQH1MuaSpojKlOnbhpNlHUW6an0DZmWbxXIzMWtUXO_j6-hr3BNBktRsPx4znsGw9VMq4LaJYfK7zUvF-mV9bd3_v3qtQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2016+IEEE+International+Conference+on+Cluster+Computing+%28CLUSTER%29&rft.atitle=Improving+Collective+I%2FO+Performance+Using+Non-volatile+Memory+Devices&rft.au=Congiu%2C+Giuseppe&rft.au=Narasimhamurthy%2C+Sai&rft.au=Suss%2C+Tim&rft.au=Brinkmann%2C+Andre&rft.date=2016-09-01&rft.pub=IEEE&rft.eissn=2168-9253&rft.spage=120&rft.epage=129&rft_id=info:doi/10.1109%2FCLUSTER.2016.37&rft.externalDocID=7776485 |