Improving Collective I/O Performance Using Non-volatile Memory Devices

Collective I/O is a parallel I/O technique designed to deliver high performance data access to scientific applications running on high-end computing clusters. In collective I/O, write performance is highly dependent upon the storage system response time and limited by the slowest writer. The storage...

Full description

Saved in:
Bibliographic Details
Published in2016 IEEE International Conference on Cluster Computing (CLUSTER) pp. 120 - 129
Main Authors Congiu, Giuseppe, Narasimhamurthy, Sai, Suss, Tim, Brinkmann, Andre
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.09.2016
Subjects
Online AccessGet full text
ISSN2168-9253
DOI10.1109/CLUSTER.2016.37

Cover

Abstract Collective I/O is a parallel I/O technique designed to deliver high performance data access to scientific applications running on high-end computing clusters. In collective I/O, write performance is highly dependent upon the storage system response time and limited by the slowest writer. The storage system response time in conjunction with the need for global synchronisation, required during every round of data exchange and write, severely impacts collective I/O performance. Future Exascale systems will have an increasing number of processor cores, while the number of storage servers will remain relatively small. Therefore, the storage system concurrency level will further increase, worsening the global synchronisation problem. Nowadays high performance computing nodes also have access to locally attached solid state drives, effectively providing an additional tier in the storage hierarchy. Unfortunately, this tier is not always fully integrated. In this paper we propose a set of MPI-IO hints extensions that enable users to take advantage of fast, locally attached storage devices to boost collective I/O performance by increasing parallelism and reducing global synchronisation impact in the ROMIO implementation. We demonstrate that by using local storage resources, collective write performance can be greatly improved compared to the case in which only the global parallel file system is used, but can also decrease if the ratio between aggregators and compute nodes is too small.
AbstractList Collective I/O is a parallel I/O technique designed to deliver high performance data access to scientific applications running on high-end computing clusters. In collective I/O, write performance is highly dependent upon the storage system response time and limited by the slowest writer. The storage system response time in conjunction with the need for global synchronisation, required during every round of data exchange and write, severely impacts collective I/O performance. Future Exascale systems will have an increasing number of processor cores, while the number of storage servers will remain relatively small. Therefore, the storage system concurrency level will further increase, worsening the global synchronisation problem. Nowadays high performance computing nodes also have access to locally attached solid state drives, effectively providing an additional tier in the storage hierarchy. Unfortunately, this tier is not always fully integrated. In this paper we propose a set of MPI-IO hints extensions that enable users to take advantage of fast, locally attached storage devices to boost collective I/O performance by increasing parallelism and reducing global synchronisation impact in the ROMIO implementation. We demonstrate that by using local storage resources, collective write performance can be greatly improved compared to the case in which only the global parallel file system is used, but can also decrease if the ratio between aggregators and compute nodes is too small.
Author Brinkmann, Andre
Congiu, Giuseppe
Suss, Tim
Narasimhamurthy, Sai
Author_xml – sequence: 1
  givenname: Giuseppe
  surname: Congiu
  fullname: Congiu, Giuseppe
  email: giuseppe.congiu@seagate.com
  organization: Emerging Technol. Group Seagate Syst. Ltd., Havant, UK
– sequence: 2
  givenname: Sai
  surname: Narasimhamurthy
  fullname: Narasimhamurthy, Sai
  email: sai.narasimhamurthy@seagate.com
  organization: Emerging Technol. Group Seagate Syst. Ltd., Havant, UK
– sequence: 3
  givenname: Tim
  surname: Suss
  fullname: Suss, Tim
  email: t.suess@uni-mainz.de
  organization: Zentrum fur Datenverarbeitung Johannes Gutenberg, Univ. Mainz, Mainz, Germany
– sequence: 4
  givenname: Andre
  surname: Brinkmann
  fullname: Brinkmann, Andre
  email: brinkman@uni-mainz.de
  organization: Zentrum fur Datenverarbeitung Johannes Gutenberg, Univ. Mainz, Mainz, Germany
BookMark eNotzM1Kw0AUQOFRFGxr1y7c5AWS3jvj_C0lthqIVrRZlyG5IyNJpiQh0LcX0dXZfJwlu-pjT4zdIWSIYDd5WX0eth8ZB1SZ0BdsiRIsCCWFvWQLjsqklktxw9bj-A0AaJVBaxdsV3SnIc6h_0ry2LZUT2GmpNjsk3cafBw619eUVOMveIt9OsfWTaGl5JW6OJyTJ5pDTeMtu_auHWn93xWrdttD_pKW--cifyzTgFpOqUdnsCFSulacQErtGysUIYDwXkvupa21aRqgGrjhTqL1DXhLZCySFit2__cNRHQ8DaFzw_motVYPRoofkI5NXg
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/CLUSTER.2016.37
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 1509036539
9781509036530
EISSN 2168-9253
EndPage 129
ExternalDocumentID 7776485
Genre orig-research
GroupedDBID 29O
6IE
6IF
6IH
6IK
6IL
6IN
AAJGR
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IPLJI
M43
OCL
RIE
RIL
RNS
ID FETCH-LOGICAL-i175t-f1a81dee67c62e0557fd936e1003ff752f59c78dd0ec0282a519fd0f9ee891e73
IEDL.DBID RIE
IngestDate Wed Aug 27 02:43:56 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-f1a81dee67c62e0557fd936e1003ff752f59c78dd0ec0282a519fd0f9ee891e73
PageCount 10
ParticipantIDs ieee_primary_7776485
PublicationCentury 2000
PublicationDate 2016-Sept.
PublicationDateYYYYMMDD 2016-09-01
PublicationDate_xml – month: 09
  year: 2016
  text: 2016-Sept.
PublicationDecade 2010
PublicationTitle 2016 IEEE International Conference on Cluster Computing (CLUSTER)
PublicationTitleAbbrev CLUSTR
PublicationYear 2016
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0001968199
ssj0037306
Score 2.1024764
Snippet Collective I/O is a parallel I/O technique designed to deliver high performance data access to scientific applications running on high-end computing clusters....
SourceID ieee
SourceType Publisher
StartPage 120
SubjectTerms Bandwidth
Collective I/O
HPC
Layout
Memory management
MPI-IO
Non-Volatile Memory
Nonvolatile memory
Performance evaluation
Servers
Synchronization
Title Improving Collective I/O Performance Using Non-volatile Memory Devices
URI https://ieeexplore.ieee.org/document/7776485
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8NADLbaTkwFWsRbNzCSNM97zIWqIFoqQaVuVZPzSQiUIpQM8OvxXdJWIAa2KNPJvnyf7Xy2Aa7sOgdi1cCTXKOX6Ihw0ETSMyaVKg8jobRNFCdTPp4n94t00YLrbS8MIjrxGfr20f3L1-u8sqWygRCCJzJtQ5uuWd2rtaunKE7kpjYoHNPN5c0onzBQg-HD_IniQ6vl4n78c5eKo5JRFyabQ9QKkle_KjM___o1n_G_p9yH_q5pj822dHQALSwOobvZ2sCaj7gHo20dgbmqgQM8djd4ZLNdEwFzUgI2XRce4Rd57w3ZxIpyP9kNOnDpw3x0-zwce802Be-FQoTSM-GKYlNELnIeoR29ZbSKOYZkLGNEGplU5UJqHWBuE7EVxXZGB0YhShWiiI-gU6wLPAaW5oYCkSTETOgkU4nEjBInYVtNTBKsshPoWbMs3-uBGcvGIqd_vz6DPeuVWrh1Dp3yo8ILYvoyu3Qu_gYGN6eH
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwED2VMsBUoEV844GRpPlw7HguVC00pRKt1K1q4rOEQAlC6QC_HttJW4EY2CJP1l3y3t3l3R3AjVnnoFnVc2Im0aEy0DiogthRKopF5gdcSJMoJmM2mNGHeTRvwO2mFwYRrfgMXfNo_-XLIluZUlmXc85oHO3AruZ9GlXdWtuKimCa3sQah0P97rJ6mI_viW5vNHvWEaJRczE3_LlNxZJJvwXJ-hqVhuTVXZWpm339mtD433seQGfbtkcmG0I6hAbmR9Ba720g9Wfchv6mkkBs3cBCHhl2n8hk20ZArJiAjIvc0Qim_feGJDGy3E9yhxZeOjDr3097A6fep-C86CChdJS_1NEpIuMZC9AM31JShAx9bSyleBSoSGQ8ltLDzKRiSx3dKekpgRgLH3l4DM28yPEESJQpHYpQH1MuaSpojKlOnbhpNlHUW6an0DZmWbxXIzMWtUXO_j6-hr3BNBktRsPx4znsGw9VMq4LaJYfK7zUvF-mV9bd3_v3qtQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2016+IEEE+International+Conference+on+Cluster+Computing+%28CLUSTER%29&rft.atitle=Improving+Collective+I%2FO+Performance+Using+Non-volatile+Memory+Devices&rft.au=Congiu%2C+Giuseppe&rft.au=Narasimhamurthy%2C+Sai&rft.au=Suss%2C+Tim&rft.au=Brinkmann%2C+Andre&rft.date=2016-09-01&rft.pub=IEEE&rft.eissn=2168-9253&rft.spage=120&rft.epage=129&rft_id=info:doi/10.1109%2FCLUSTER.2016.37&rft.externalDocID=7776485