Tagging Like Humans: Diverse and Distinct Image Annotation
In this work we propose a new automatic image annotation model, dubbed diverse and distinct image annotation (D2IA). The generative model D2IA is inspired by the ensemble of human annotations, which create semantically relevant, yet distinct and diverse tags. In D2IA, we generate a relevant and dist...
Saved in:
Published in | 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition pp. 7967 - 7975 |
---|---|
Main Authors | , , , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.06.2018
|
Subjects | |
Online Access | Get full text |
ISSN | 1063-6919 |
DOI | 10.1109/CVPR.2018.00831 |
Cover
Loading…
Summary: | In this work we propose a new automatic image annotation model, dubbed diverse and distinct image annotation (D2IA). The generative model D2IA is inspired by the ensemble of human annotations, which create semantically relevant, yet distinct and diverse tags. In D2IA, we generate a relevant and distinct tag subset, in which the tags are relevant to the image contents and semantically distinct to each other, using sequential sampling from a determinantal point process (DPP) model. Multiple such tag subsets that cover diverse semantic aspects or diverse semantic levels of the image contents are generated by randomly perturbing the DPP sampling process. We leverage a generative adversarial network (GAN) model to train D2IA. Extensive experiments including quantitative and qualitative comparisons, as well as human subject studies, on two benchmark datasets demonstrate that the proposed model can produce more diverse and distinct tags than the state-of-the-arts. |
---|---|
ISSN: | 1063-6919 |
DOI: | 10.1109/CVPR.2018.00831 |