Tagging Like Humans: Diverse and Distinct Image Annotation

In this work we propose a new automatic image annotation model, dubbed diverse and distinct image annotation (D2IA). The generative model D2IA is inspired by the ensemble of human annotations, which create semantically relevant, yet distinct and diverse tags. In D2IA, we generate a relevant and dist...

Full description

Saved in:
Bibliographic Details
Published in2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition pp. 7967 - 7975
Main Authors Wu, Baoyuan, Chen, Weidong, Sun, Peng, Liu, Wei, Ghanem, Bernard, Lyu, Siwei
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.06.2018
Subjects
Online AccessGet full text
ISSN1063-6919
DOI10.1109/CVPR.2018.00831

Cover

Loading…
Abstract In this work we propose a new automatic image annotation model, dubbed diverse and distinct image annotation (D2IA). The generative model D2IA is inspired by the ensemble of human annotations, which create semantically relevant, yet distinct and diverse tags. In D2IA, we generate a relevant and distinct tag subset, in which the tags are relevant to the image contents and semantically distinct to each other, using sequential sampling from a determinantal point process (DPP) model. Multiple such tag subsets that cover diverse semantic aspects or diverse semantic levels of the image contents are generated by randomly perturbing the DPP sampling process. We leverage a generative adversarial network (GAN) model to train D2IA. Extensive experiments including quantitative and qualitative comparisons, as well as human subject studies, on two benchmark datasets demonstrate that the proposed model can produce more diverse and distinct tags than the state-of-the-arts.
AbstractList In this work we propose a new automatic image annotation model, dubbed diverse and distinct image annotation (D2IA). The generative model D2IA is inspired by the ensemble of human annotations, which create semantically relevant, yet distinct and diverse tags. In D2IA, we generate a relevant and distinct tag subset, in which the tags are relevant to the image contents and semantically distinct to each other, using sequential sampling from a determinantal point process (DPP) model. Multiple such tag subsets that cover diverse semantic aspects or diverse semantic levels of the image contents are generated by randomly perturbing the DPP sampling process. We leverage a generative adversarial network (GAN) model to train D2IA. Extensive experiments including quantitative and qualitative comparisons, as well as human subject studies, on two benchmark datasets demonstrate that the proposed model can produce more diverse and distinct tags than the state-of-the-arts.
Author Chen, Weidong
Sun, Peng
Liu, Wei
Lyu, Siwei
Wu, Baoyuan
Ghanem, Bernard
Author_xml – sequence: 1
  givenname: Baoyuan
  surname: Wu
  fullname: Wu, Baoyuan
– sequence: 2
  givenname: Weidong
  surname: Chen
  fullname: Chen, Weidong
– sequence: 3
  givenname: Peng
  surname: Sun
  fullname: Sun, Peng
– sequence: 4
  givenname: Wei
  surname: Liu
  fullname: Liu, Wei
– sequence: 5
  givenname: Bernard
  surname: Ghanem
  fullname: Ghanem, Bernard
– sequence: 6
  givenname: Siwei
  surname: Lyu
  fullname: Lyu, Siwei
BookMark eNotjMFKw0AQQFdRsNaePXjZH0id2clud3orsdpCQZHqtWySaVg1G2mi4N9b0NN77_Iu1Vnqkih1jTBFBL4tXp-epwbQTwE84Yma8MyjJe9cboBP1QjBUeYY-UJN-v4NAIzz5HM7UvNtaJqYGr2J76JXX21I_VzfxW859KJDqo_eDzFVg163oRG9SKkbwhC7dKXO9-Gjl8k_x-rlfrktVtnm8WFdLDZZxJkdMpHa-QrIlljnoUI6ls3BB0OGgqskZwHGsmSkvN6T5boqiQEcm6pGobG6-ftGEdl9HmIbDj87b2eeDdMvb6hIiA
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/CVPR.2018.00831
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISBN 9781538664209
1538664208
EISSN 1063-6919
EndPage 7975
ExternalDocumentID 8578929
Genre orig-research
GroupedDBID 6IE
6IH
6IL
6IN
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IJVOP
OCL
RIE
RIL
RIO
ID FETCH-LOGICAL-i175t-eed68c035b1d4ac1368c5408a2323a6ce49e091bb9134df359dcb3900692cd1e3
IEDL.DBID RIE
IngestDate Wed Aug 27 02:52:16 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-eed68c035b1d4ac1368c5408a2323a6ce49e091bb9134df359dcb3900692cd1e3
PageCount 9
ParticipantIDs ieee_primary_8578929
PublicationCentury 2000
PublicationDate 2018-Jun
PublicationDateYYYYMMDD 2018-06-01
PublicationDate_xml – month: 06
  year: 2018
  text: 2018-Jun
PublicationDecade 2010
PublicationTitle 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition
PublicationTitleAbbrev CVPR
PublicationYear 2018
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0002683845
ssj0003211698
Score 2.33161
Snippet In this work we propose a new automatic image annotation model, dubbed diverse and distinct image annotation (D2IA). The generative model D2IA is inspired by...
SourceID ieee
SourceType Publisher
StartPage 7967
SubjectTerms Gallium nitride
Generators
Image annotation
Redundancy
Semantics
Task analysis
Training
Title Tagging Like Humans: Diverse and Distinct Image Annotation
URI https://ieeexplore.ieee.org/document/8578929
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFH4BTp5Qwfg7PXh0sK3daLkZlKBRQwwYbqRr3wwhDiPj4l_v6zbRGA_e2l7WtGvf1_e-9z2ACyMsSuv7Xqhk6okk4p4OtPAUYXndU-hU9B3b4jEeTcXdLJrV4HKbC4OIBfkMO65ZxPLtymycq6wr6fcic16HOj3cylytrT8ljCWXVYTM9Tm9bGIlKzWfwFfdwfP4yXG5HHlSuqJyP8qpFNZk2ISHr3mUJJJlZ5MnHfPxS6LxvxPdhfZ33h4bby3SHtQw24dmBTRZdYzXLehPtHM0v7D7xRJZ4cdf99l1QdFApjNLbTr6mcnZ7StdOOwqy1ZlzL4N0-HNZDDyqiIK3oKQQe7RF2NpfB4lgRXaBJx6hNKkJijFdWxQKCTMkCQuBG9THilrEq6cgnFobID8ABrZKsNDYEHqxymGMuY6FD20WkjNQ-dJRQxUKo6g5ZZi_lbqZMyrVTj-e_gEdtxmlLSrU2jk7xs8IwOfJ-fFzn4CJ9Gi8w
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFH5BPOgJFYy_7cGjg23tRsvNoAQUCDFguJGufSOEOIyMi3-97TbRGA_e2l7W9Mfe1_e-9z2AG8U0cu26ji947LAooI70JHOEwfKyKdCq6Fu2xTDsTtjjNJiW4HabC4OIGfkM67aZxfL1Sm2sq6zBzfEy5nwHdo3dZyLP1tp6VPyQU17EyGyfmrdNKHih5-O5otF-GT1bNpelT3JbVu5HQZXMnnQqMPiaSU4jWdY3aVRXH79EGv871QOofWfukdHWJh1CCZMjqBRQkxQXeV2F1lhaV_Oc9BdLJJknf90i9xlJA4lMtGmby5-olPRezS-H3CXJKo_a12DSeRi3u05RRsFZGGyQOuaLIVcuDSJPM6k8anoGp3FpwBSVoUIm0KCGKLJBeB3TQGgVUWE1jH2lPaTHUE5WCZ4A8WI3jNHnIZU-a6KWjEvqW18qoididgpVuxSzt1wpY1aswtnfw9ew1x0P-rN-b_h0Dvt2Y3IS1gWU0_cNXhpzn0ZX2S5_AumPpkM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2018+IEEE%2FCVF+Conference+on+Computer+Vision+and+Pattern+Recognition&rft.atitle=Tagging+Like+Humans%3A+Diverse+and+Distinct+Image+Annotation&rft.au=Wu%2C+Baoyuan&rft.au=Chen%2C+Weidong&rft.au=Sun%2C+Peng&rft.au=Liu%2C+Wei&rft.date=2018-06-01&rft.pub=IEEE&rft.eissn=1063-6919&rft.spage=7967&rft.epage=7975&rft_id=info:doi/10.1109%2FCVPR.2018.00831&rft.externalDocID=8578929