Multi-level Factorisation Net for Person Re-identification

Key to effective person re-identification (Re-ID) is modelling discriminative and view-invariant factors of person appearance at both high and low semantic levels. Recently developed deep Re-ID models either learn a holistic single semantic level feature representation and/or require laborious human...

Full description

Saved in:
Bibliographic Details
Published in2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition pp. 2109 - 2118
Main Authors Chang, Xiaobin, Hospedales, Timothy M., Xiang, Tao
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.06.2018
Subjects
Online AccessGet full text
ISSN1063-6919
DOI10.1109/CVPR.2018.00225

Cover

Loading…
Abstract Key to effective person re-identification (Re-ID) is modelling discriminative and view-invariant factors of person appearance at both high and low semantic levels. Recently developed deep Re-ID models either learn a holistic single semantic level feature representation and/or require laborious human annotation of these factors as attributes. We propose Multi-Level Factorisation Net (MLFN), a novel network architecture that factorises the visual appearance of a person into latent discriminative factors at multiple semantic levels without manual annotation. MLFN is composed of multiple stacked blocks. Each block contains multiple factor modules to model latent factors at a specific level, and factor selection modules that dynamically select the factor modules to interpret the content of each input image. The outputs of the factor selection modules also provide a compact latent factor descriptor that is complementary to the conventional deeply learned features. MLFN achieves state-of-the-art results on three Re-ID datasets, as well as compelling results on the general object categorisation CIFAR-100 dataset.
AbstractList Key to effective person re-identification (Re-ID) is modelling discriminative and view-invariant factors of person appearance at both high and low semantic levels. Recently developed deep Re-ID models either learn a holistic single semantic level feature representation and/or require laborious human annotation of these factors as attributes. We propose Multi-Level Factorisation Net (MLFN), a novel network architecture that factorises the visual appearance of a person into latent discriminative factors at multiple semantic levels without manual annotation. MLFN is composed of multiple stacked blocks. Each block contains multiple factor modules to model latent factors at a specific level, and factor selection modules that dynamically select the factor modules to interpret the content of each input image. The outputs of the factor selection modules also provide a compact latent factor descriptor that is complementary to the conventional deeply learned features. MLFN achieves state-of-the-art results on three Re-ID datasets, as well as compelling results on the general object categorisation CIFAR-100 dataset.
Author Chang, Xiaobin
Hospedales, Timothy M.
Xiang, Tao
Author_xml – sequence: 1
  givenname: Xiaobin
  surname: Chang
  fullname: Chang, Xiaobin
– sequence: 2
  givenname: Timothy M.
  surname: Hospedales
  fullname: Hospedales, Timothy M.
– sequence: 3
  givenname: Tao
  surname: Xiang
  fullname: Xiang, Tao
BookMark eNotzE1LxDAUheEoCs6MXbtw0z-Qmo8mvXEnxVFhRodB3Q63zQ1EaittFPz3FnV1eOHhLNlJP_TE2IUUhZTCXdWvu32hhIRCCKXMEctcBdJosLZUwh2zhRRWc-ukO2PZNL2J2VnQUJoFu95-dinyjr6oy9fYpmGME6Y49PkjpTwMY76jcZpzTzx66lMMsf0F5-w0YDdR9r8r9rK-fa7v-ebp7qG-2fAoK5M4eVsa5axHJNv6gLbRtnHQaGNB-DJgcEF6AmNK5b0ipVHMKCAEU6HXK3b59xuJ6PAxxnccvw9gKtBK6x9FqUqq
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/CVPR.2018.00225
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL) - NZ
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISBN 9781538664209
1538664208
EISSN 1063-6919
EndPage 2118
ExternalDocumentID 8578323
Genre orig-research
GroupedDBID 6IE
6IH
6IL
6IN
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IJVOP
OCL
RIE
RIL
RIO
ID FETCH-LOGICAL-i175t-ed645296daae6cdfa6b36b98b35680d4faf9f1de85542dd2e23a0a6bfa8f57ad3
IEDL.DBID RIE
IngestDate Wed Aug 27 02:52:16 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-ed645296daae6cdfa6b36b98b35680d4faf9f1de85542dd2e23a0a6bfa8f57ad3
PageCount 10
ParticipantIDs ieee_primary_8578323
PublicationCentury 2000
PublicationDate 2018-Jun
PublicationDateYYYYMMDD 2018-06-01
PublicationDate_xml – month: 06
  year: 2018
  text: 2018-Jun
PublicationDecade 2010
PublicationTitle 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition
PublicationTitleAbbrev CVPR
PublicationYear 2018
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0002683845
ssj0003211698
Score 2.5926044
Snippet Key to effective person re-identification (Re-ID) is modelling discriminative and view-invariant factors of person appearance at both high and low semantic...
SourceID ieee
SourceType Publisher
StartPage 2109
SubjectTerms Cameras
Computer architecture
Feature extraction
Frequency modulation
Semantics
Task analysis
Visualization
Title Multi-level Factorisation Net for Person Re-identification
URI https://ieeexplore.ieee.org/document/8578323
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ3PT8MgFMfJ5snT1M34Oxw8ykahpeB1cVlMXJbFmd0WKI9k0WxGu4t_vUBxGuPBW2k4EGh5X3if9x5C19YoZgUFUtoqJ17fZkQVAIQpVmbG0MK4CMhOxHie3y-KRQvd7GJhACDCZ9APj9GXbzfVNlyVDaT_vDjjbdT2B7cmVmt3n8KE5DJ5yEKb-5ONUDJl88moGgyfprPAckV4MpTG_lFOJVqTUQc9fI2jgUie-9va9KuPXyka_zvQA9T7jtvD051FOkQtWB-hThKaOP3G7110G8NuyUsAhvAoVtxJVA-eQI29jsXTqMTxDMjKJqAoduih-ejucTgmqYgCWXllUBOwIvpWrdYgKuu0MFwYJQ0vhKQ2d9opl1kIuBqzlgHjmvpOTktXlNryY7S33qzhBGFtgbqsNDSvWF4KkM6rFQ5-mzAq1xk7Rd0wFcvXJk_GMs3C2d-vz9F-WIwGu7pAe_XbFi69ga_NVVzZT2WYpSk
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ3PT8MgFMfJnAc9Td2Mv-XgUbYWWlq8Li5Tt2VZNrPbAuWRGM1mtLv41wsUpzEevJWGAwHa94X3ee8hdKWVoJpHQDJdJMTq25iIFIBQQbNYqShVxgOyI96fJffzdF5D15tYGADw8Bm03aP35etVsXZXZZ3cbi9G2RbatnY_jatorc2NCuU5y4OPzLWZPdtwkYd8PnEkOt3H8cTRXB6fdMWxfxRU8fak10DDr5FUGMlze12qdvHxK0njf4e6h1rfkXt4vLFJ-6gGywPUCFIThw_5vYlufOAteXHIEO75mjuB68EjKLFVsnjstTieAHnSASnyHVpo1ruddvsklFEgT1YblAQ0995VLSXwQhvJFeNK5IqlPI90YqQRJtbggDWqNQXKZGQ7GZmbNJOaHaL6crWEI4SlhsjEmYqSgiYZh9xYvcLA_iiUSGRMj1HTTcXitcqUsQizcPL360u0058OB4vB3ejhFO26hakgrDNUL9_WcG7Nfaku_Cp_AjUxqHI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2018+IEEE%2FCVF+Conference+on+Computer+Vision+and+Pattern+Recognition&rft.atitle=Multi-level+Factorisation+Net+for+Person+Re-identification&rft.au=Chang%2C+Xiaobin&rft.au=Hospedales%2C+Timothy+M.&rft.au=Xiang%2C+Tao&rft.date=2018-06-01&rft.pub=IEEE&rft.eissn=1063-6919&rft.spage=2109&rft.epage=2118&rft_id=info:doi/10.1109%2FCVPR.2018.00225&rft.externalDocID=8578323