Multi-level Factorisation Net for Person Re-identification
Key to effective person re-identification (Re-ID) is modelling discriminative and view-invariant factors of person appearance at both high and low semantic levels. Recently developed deep Re-ID models either learn a holistic single semantic level feature representation and/or require laborious human...
Saved in:
Published in | 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition pp. 2109 - 2118 |
---|---|
Main Authors | , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.06.2018
|
Subjects | |
Online Access | Get full text |
ISSN | 1063-6919 |
DOI | 10.1109/CVPR.2018.00225 |
Cover
Loading…
Abstract | Key to effective person re-identification (Re-ID) is modelling discriminative and view-invariant factors of person appearance at both high and low semantic levels. Recently developed deep Re-ID models either learn a holistic single semantic level feature representation and/or require laborious human annotation of these factors as attributes. We propose Multi-Level Factorisation Net (MLFN), a novel network architecture that factorises the visual appearance of a person into latent discriminative factors at multiple semantic levels without manual annotation. MLFN is composed of multiple stacked blocks. Each block contains multiple factor modules to model latent factors at a specific level, and factor selection modules that dynamically select the factor modules to interpret the content of each input image. The outputs of the factor selection modules also provide a compact latent factor descriptor that is complementary to the conventional deeply learned features. MLFN achieves state-of-the-art results on three Re-ID datasets, as well as compelling results on the general object categorisation CIFAR-100 dataset. |
---|---|
AbstractList | Key to effective person re-identification (Re-ID) is modelling discriminative and view-invariant factors of person appearance at both high and low semantic levels. Recently developed deep Re-ID models either learn a holistic single semantic level feature representation and/or require laborious human annotation of these factors as attributes. We propose Multi-Level Factorisation Net (MLFN), a novel network architecture that factorises the visual appearance of a person into latent discriminative factors at multiple semantic levels without manual annotation. MLFN is composed of multiple stacked blocks. Each block contains multiple factor modules to model latent factors at a specific level, and factor selection modules that dynamically select the factor modules to interpret the content of each input image. The outputs of the factor selection modules also provide a compact latent factor descriptor that is complementary to the conventional deeply learned features. MLFN achieves state-of-the-art results on three Re-ID datasets, as well as compelling results on the general object categorisation CIFAR-100 dataset. |
Author | Chang, Xiaobin Hospedales, Timothy M. Xiang, Tao |
Author_xml | – sequence: 1 givenname: Xiaobin surname: Chang fullname: Chang, Xiaobin – sequence: 2 givenname: Timothy M. surname: Hospedales fullname: Hospedales, Timothy M. – sequence: 3 givenname: Tao surname: Xiang fullname: Xiang, Tao |
BookMark | eNotzE1LxDAUheEoCs6MXbtw0z-Qmo8mvXEnxVFhRodB3Q63zQ1EaittFPz3FnV1eOHhLNlJP_TE2IUUhZTCXdWvu32hhIRCCKXMEctcBdJosLZUwh2zhRRWc-ukO2PZNL2J2VnQUJoFu95-dinyjr6oy9fYpmGME6Y49PkjpTwMY76jcZpzTzx66lMMsf0F5-w0YDdR9r8r9rK-fa7v-ebp7qG-2fAoK5M4eVsa5axHJNv6gLbRtnHQaGNB-DJgcEF6AmNK5b0ipVHMKCAEU6HXK3b59xuJ6PAxxnccvw9gKtBK6x9FqUqq |
CODEN | IEEPAD |
ContentType | Conference Proceeding |
DBID | 6IE 6IH CBEJK RIE RIO |
DOI | 10.1109/CVPR.2018.00225 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) - NZ IEEE Proceedings Order Plans (POP) 1998-present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences |
EISBN | 9781538664209 1538664208 |
EISSN | 1063-6919 |
EndPage | 2118 |
ExternalDocumentID | 8578323 |
Genre | orig-research |
GroupedDBID | 6IE 6IH 6IL 6IN AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IJVOP OCL RIE RIL RIO |
ID | FETCH-LOGICAL-i175t-ed645296daae6cdfa6b36b98b35680d4faf9f1de85542dd2e23a0a6bfa8f57ad3 |
IEDL.DBID | RIE |
IngestDate | Wed Aug 27 02:52:16 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i175t-ed645296daae6cdfa6b36b98b35680d4faf9f1de85542dd2e23a0a6bfa8f57ad3 |
PageCount | 10 |
ParticipantIDs | ieee_primary_8578323 |
PublicationCentury | 2000 |
PublicationDate | 2018-Jun |
PublicationDateYYYYMMDD | 2018-06-01 |
PublicationDate_xml | – month: 06 year: 2018 text: 2018-Jun |
PublicationDecade | 2010 |
PublicationTitle | 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition |
PublicationTitleAbbrev | CVPR |
PublicationYear | 2018 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0002683845 ssj0003211698 |
Score | 2.5926044 |
Snippet | Key to effective person re-identification (Re-ID) is modelling discriminative and view-invariant factors of person appearance at both high and low semantic... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 2109 |
SubjectTerms | Cameras Computer architecture Feature extraction Frequency modulation Semantics Task analysis Visualization |
Title | Multi-level Factorisation Net for Person Re-identification |
URI | https://ieeexplore.ieee.org/document/8578323 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ3PT8MgFMfJ5snT1M34Oxw8ykahpeB1cVlMXJbFmd0WKI9k0WxGu4t_vUBxGuPBW2k4EGh5X3if9x5C19YoZgUFUtoqJ17fZkQVAIQpVmbG0MK4CMhOxHie3y-KRQvd7GJhACDCZ9APj9GXbzfVNlyVDaT_vDjjbdT2B7cmVmt3n8KE5DJ5yEKb-5ONUDJl88moGgyfprPAckV4MpTG_lFOJVqTUQc9fI2jgUie-9va9KuPXyka_zvQA9T7jtvD051FOkQtWB-hThKaOP3G7110G8NuyUsAhvAoVtxJVA-eQI29jsXTqMTxDMjKJqAoduih-ejucTgmqYgCWXllUBOwIvpWrdYgKuu0MFwYJQ0vhKQ2d9opl1kIuBqzlgHjmvpOTktXlNryY7S33qzhBGFtgbqsNDSvWF4KkM6rFQ5-mzAq1xk7Rd0wFcvXJk_GMs3C2d-vz9F-WIwGu7pAe_XbFi69ga_NVVzZT2WYpSk |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ3PT8MgFMfJnAc9Td2Mv-XgUbYWWlq8Li5Tt2VZNrPbAuWRGM1mtLv41wsUpzEevJWGAwHa94X3ee8hdKWVoJpHQDJdJMTq25iIFIBQQbNYqShVxgOyI96fJffzdF5D15tYGADw8Bm03aP35etVsXZXZZ3cbi9G2RbatnY_jatorc2NCuU5y4OPzLWZPdtwkYd8PnEkOt3H8cTRXB6fdMWxfxRU8fak10DDr5FUGMlze12qdvHxK0njf4e6h1rfkXt4vLFJ-6gGywPUCFIThw_5vYlufOAteXHIEO75mjuB68EjKLFVsnjstTieAHnSASnyHVpo1ruddvsklFEgT1YblAQ0995VLSXwQhvJFeNK5IqlPI90YqQRJtbggDWqNQXKZGQ7GZmbNJOaHaL6crWEI4SlhsjEmYqSgiYZh9xYvcLA_iiUSGRMj1HTTcXitcqUsQizcPL360u0058OB4vB3ejhFO26hakgrDNUL9_WcG7Nfaku_Cp_AjUxqHI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2018+IEEE%2FCVF+Conference+on+Computer+Vision+and+Pattern+Recognition&rft.atitle=Multi-level+Factorisation+Net+for+Person+Re-identification&rft.au=Chang%2C+Xiaobin&rft.au=Hospedales%2C+Timothy+M.&rft.au=Xiang%2C+Tao&rft.date=2018-06-01&rft.pub=IEEE&rft.eissn=1063-6919&rft.spage=2109&rft.epage=2118&rft_id=info:doi/10.1109%2FCVPR.2018.00225&rft.externalDocID=8578323 |