State Estimation with Probability Constraints

This paper considers a state estimation problem for a discrete-time linear system driven by a Gaussian random process. The second order statistics of the input process and state initial condition are uncertain. However, the probability that the state and input satisfy linear constraints during the e...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the 44th IEEE Conference on Decision and Control pp. 380 - 385
Main Authors Rotea, M., Lana, C.
Format Conference Proceeding
LanguageEnglish
Published IEEE 2005
Subjects
Online AccessGet full text
ISBN9780780395671
0780395670
ISSN0191-2216
DOI10.1109/CDC.2005.1582185

Cover

Loading…
Abstract This paper considers a state estimation problem for a discrete-time linear system driven by a Gaussian random process. The second order statistics of the input process and state initial condition are uncertain. However, the probability that the state and input satisfy linear constraints during the estimation interval is known. A minimax estimation problem is formulated to determine an estimator that minimizes the worst-case mean square error criterion, over the uncertain second order statistics, subject to the probability constraints. It is shown that a solution to this constrained state estimation problem is given by a Kalman filter for appropriately chosen input and initial condition models. These models are obtained from a finite dimensional convex optimization problem. The application of this estimator to an aircraft tracking problem quantifies the improvement in estimation accuracy obtained from the inclusion of probability constraints in the minimax formulation.
AbstractList This paper considers a state estimation problem for a discrete-time linear system driven by a Gaussian random process. The second order statistics of the input process and state initial condition are uncertain. However, the probability that the state and input satisfy linear constraints during the estimation interval is known. A minimax estimation problem is formulated to determine an estimator that minimizes the worst-case mean square error criterion, over the uncertain second order statistics, subject to the probability constraints. It is shown that a solution to this constrained state estimation problem is given by a Kalman filter for appropriately chosen input and initial condition models. These models are obtained from a finite dimensional convex optimization problem. The application of this estimator to an aircraft tracking problem quantifies the improvement in estimation accuracy obtained from the inclusion of probability constraints in the minimax formulation.
Author Lana, C.
Rotea, M.
Author_xml – sequence: 1
  givenname: M.
  surname: Rotea
  fullname: Rotea, M.
  organization: Purdue University, West Lafayette, IN 47907, USA. rotea@purdue.edu
– sequence: 2
  givenname: C.
  surname: Lana
  fullname: Lana, C.
BookMark eNotj0FLw0AQRhesYFt7F7zkDyTO7HSz2aPEWoWCgnous8ksrtREsgvSf2_Bwgfv9njfQs2GcRClbhAqRHB37UNbaQBToWk0NuZCrZxt4DRyprY4U3NAh6XWWF-pRUpfANBAXc9V-ZY5S7FJOX5zjuNQ_Mb8WbxOo2cfDzEfi3YcUp44Djldq8vAhySrM5fq43Hz3j6Vu5ftc3u_KyNak0th5F5LELRIgXjNmgz1ziNZY2TdOeelB9t1wbuGrWcBol58sAS917RUt__eKCL7n-nUNh3353f0B407RWw
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/CDC.2005.1582185
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Statistics
EndPage 385
ExternalDocumentID 1582185
Genre orig-research
GroupedDBID 29P
6IE
6IF
6IH
6IK
6IM
AAJGR
AFFNX
ALMA_UNASSIGNED_HOLDINGS
CBEJK
IPLJI
RIE
RIO
RNS
ID FETCH-LOGICAL-i175t-ea1ad2efe1713f3a4a2353d9b13755e4c99bed07ccfb98a7bae033debf730db23
IEDL.DBID RIE
ISBN 9780780395671
0780395670
ISSN 0191-2216
IngestDate Wed Aug 27 02:03:26 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-ea1ad2efe1713f3a4a2353d9b13755e4c99bed07ccfb98a7bae033debf730db23
PageCount 6
ParticipantIDs ieee_primary_1582185
PublicationCentury 2000
PublicationDate 20050000
PublicationDateYYYYMMDD 2005-01-01
PublicationDate_xml – year: 2005
  text: 20050000
PublicationDecade 2000
PublicationTitle Proceedings of the 44th IEEE Conference on Decision and Control
PublicationTitleAbbrev CDC
PublicationYear 2005
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0008066
ssj0000453792
Score 1.3699101
Snippet This paper considers a state estimation problem for a discrete-time linear system driven by a Gaussian random process. The second order statistics of the input...
SourceID ieee
SourceType Publisher
StartPage 380
SubjectTerms Error analysis
Linear systems
Mean square error methods
Minimax techniques
Noise generators
Noise measurement
Probability
Random processes
State estimation
Statistics
Title State Estimation with Probability Constraints
URI https://ieeexplore.ieee.org/document/1582185
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwED21ncoCtEV8KwMjaePYieO5tKqQihio1K3y2Y6EkFoE6QC_Hn-kKSAGpsQZLolPie_e-b0DuFFUEymoirlKTcykTmOhMY_tN26PnGlZODby_CGfLdj9Mlu24Lbhwhhj_OYzM3SnvpavN2rroLIRcazOImtD2yZugavV4Ck2NKFc7KWjiiTUKW0-EqcpyX3KXiTU5gO81npqxmRXv0zEaHw3DkhLfbMfXVf8ojM9hPnuccNek5fhtsKh-vyl5Pjf9zmCwZ7eFz02C9cxtMy6BwfflAl70HVBaNBw7kPsI9JoYoeB6Bg59NaZwKDy_RG5vp--20T1PoDFdPI0nsV1m4X42cYOlXULsS4ypSE2YS2pZDKlGdUCCeVZZpgSAo1OuFIlikJylCahVBss7d9BY0pPoLPerM0pRASpSBIsCobIciwFtUYk4dYiUynDM-i7WVi9BiWNVT0B539fvoCuF0r1gMcldKq3rbmyIUCF1973X3NUqkE
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LT8IwGP-CeBAvKmB8u4NHC-varesZIahAPEDCjayPJcYEjI6D_vX2MYYaD57W7vBtbdd9r_5-H8CNJApnnEjEZKQRzVSEuBIJMnvcXBlVWWrRyONJMpzRh3k8r8FthYXRWrvDZ7pjmy6Xr1ZybUNlXWxRnWm8A7tG78fYo7WqiIoxTgjjW_KoNPSZSuORoCjCiXPa05AYj4CVbE9VH28ymCHv9u56PtZSPu5H3RWndgYHMN68sD9t8tJZF6IjP39xOf53RIfQ3gL8gqdKdR1BTS-bsP-Nm7AJDWuGehbnFiBnkwZ90_VQx8DGb60I4Xm-PwJb-dPVmyje2zAb9Ke9ISoLLaBnYz0UZmGwWSSda2xc1pxkNItITBQXmLA41lRyLrQKmZS54GnGRKZDQpQWufk_KBGRY6gvV0t9AgEWhIehSFMqBE1EzokRkmFmJFIZUXEKLTsLi1fPpbEoJ-Ds79vXsDecjkeL0f3k8RwajjbVhT8uoF68rfWlMQgKceW-gy-PN62K
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+of+the+44th+IEEE+Conference+on+Decision+and+Control&rft.atitle=State+Estimation+with+Probability+Constraints&rft.au=Rotea%2C+M.&rft.au=Lana%2C+C.&rft.date=2005-01-01&rft.pub=IEEE&rft.isbn=9780780395671&rft.issn=0191-2216&rft.spage=380&rft.epage=385&rft_id=info:doi/10.1109%2FCDC.2005.1582185&rft.externalDocID=1582185
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0191-2216&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0191-2216&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0191-2216&client=summon