Event-triggered State Estimation for Dynamics Networks with Stochastic Coupling under Uncertain Occurrence Probabilities
In this paper, we address the event-triggered state estimation problem for a class of time-varying complex networks subject to multiplicative noises and stochastic coupling under uncertain occurrence probability. The stochastic coupling is modeled by introducing a set of Bernoulli distributed random...
Saved in:
Published in | Chinese Control Conference pp. 6283 - 6288 |
---|---|
Main Authors | , , |
Format | Conference Proceeding |
Language | English |
Published |
Technical Committee on Control Theory, Chinese Association of Automation
01.07.2018
|
Subjects | |
Online Access | Get full text |
ISSN | 1934-1768 |
DOI | 10.23919/ChiCC.2018.8482276 |
Cover
Loading…
Abstract | In this paper, we address the event-triggered state estimation problem for a class of time-varying complex networks subject to multiplicative noises and stochastic coupling under uncertain occurrence probability. The stochastic coupling is modeled by introducing a set of Bernoulli distributed random variables, where the uncertainties of the occurrence probability is characterized. Moreover, the event-triggered mechanism is employed with hope to reduce the network burden and save energy consumption. The aim of the paper is to design the robust state estimator for addressed dynamics networks and derive an optimized upper bound of the estimation error covariance by properly choosing the estimator gain. Finally, simulations and comparisons are provided to verify the validity of the proposed robust state estimation method. |
---|---|
AbstractList | In this paper, we address the event-triggered state estimation problem for a class of time-varying complex networks subject to multiplicative noises and stochastic coupling under uncertain occurrence probability. The stochastic coupling is modeled by introducing a set of Bernoulli distributed random variables, where the uncertainties of the occurrence probability is characterized. Moreover, the event-triggered mechanism is employed with hope to reduce the network burden and save energy consumption. The aim of the paper is to design the robust state estimator for addressed dynamics networks and derive an optimized upper bound of the estimation error covariance by properly choosing the estimator gain. Finally, simulations and comparisons are provided to verify the validity of the proposed robust state estimation method. |
Author | Zou, Lei Hu, Jun Zhang, Hongxu |
Author_xml | – sequence: 1 givenname: Hongxu surname: Zhang fullname: Zhang, Hongxu organization: Department of Applied Mathematics, Harbin University of Science and Technology, Harbin, 150080, China – sequence: 2 givenname: Jun surname: Hu fullname: Hu, Jun organization: School of Engineering, University of South Wales, UK – sequence: 3 givenname: Lei surname: Zou fullname: Zou, Lei organization: College of Electrical Engineering and Automation, Shandong University of Science and Technology, Qingdao, 266590, China |
BookMark | eNotkM1KAzEUhaMoaKtP0E1eYOokaTLJUsb6A8UKWnBXMpmbNtomJUmtfXsDdnU5h48D3x2gCx88IDQi9ZgyRdRdu3ZtO6Y1kWM5kZQ24gwNlJSEC6b45zm6JopNKtIIeYUGKX3VtagVYdfod_oDPlc5utUKIvT4PesMeJqy2-rsgsc2RPxw9HrrTMKvkA8hfid8cHld2GDWuqAGt2G_2zi_wnvfQ8QLbyBm7TyeG7OPEUrGbzF0unMblx2kG3Rp9SbB7ekO0eJx-tE-V7P500t7P6scaXiuQPWEwoQr2lEtrbK6FMIaQTqumh6amljZN4aJrtNFt7e9LQwDzgktlmyIRv-7DgCWu1i04nF5-hL7A5vZYeg |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.23919/ChiCC.2018.8482276 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Xplore IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISBN | 988156395X 9789881563958 |
EISSN | 1934-1768 |
EndPage | 6288 |
ExternalDocumentID | 8482276 |
Genre | orig-research |
GroupedDBID | 29B 6IE 6IF 6IK 6IL 6IN AAJGR AAWTH ABLEC ACGFS ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IPLJI M43 OCL RIE RIL |
ID | FETCH-LOGICAL-i175t-e9d12e4592b2a8f9fa9d16fc61b597de701f8d7c36bba156dfdffa93e55120063 |
IEDL.DBID | RIE |
IngestDate | Wed Aug 27 02:54:57 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i175t-e9d12e4592b2a8f9fa9d16fc61b597de701f8d7c36bba156dfdffa93e55120063 |
PageCount | 6 |
ParticipantIDs | ieee_primary_8482276 |
PublicationCentury | 2000 |
PublicationDate | 2018-July |
PublicationDateYYYYMMDD | 2018-07-01 |
PublicationDate_xml | – month: 07 year: 2018 text: 2018-July |
PublicationDecade | 2010 |
PublicationTitle | Chinese Control Conference |
PublicationTitleAbbrev | ChiCC |
PublicationYear | 2018 |
Publisher | Technical Committee on Control Theory, Chinese Association of Automation |
Publisher_xml | – name: Technical Committee on Control Theory, Chinese Association of Automation |
SSID | ssj0060913 |
Score | 2.044485 |
Snippet | In this paper, we address the event-triggered state estimation problem for a class of time-varying complex networks subject to multiplicative noises and... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 6283 |
SubjectTerms | Complex networks Couplings Covariance matrices Estimation error Event-triggered mechanism Multiplicative noises State estimation Stochastic coupling networks Stochastic processes Uncertain occurrence probability Upper bound |
Title | Event-triggered State Estimation for Dynamics Networks with Stochastic Coupling under Uncertain Occurrence Probabilities |
URI | https://ieeexplore.ieee.org/document/8482276 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07b8IwELaAqV36gKpveejYBBInjj2nIFQJ1KFIbMhPQJVIBYmE-ut7joE-1KFbZF1ky4lz912--w6hBylIT8SZCKywAFBSTQOepiRQmbVZnApt6u4NozEdTpLnaTptoMdDLYwxpiafmdBd1v_ydaEqlyrrsgTcWUabqAnAzddq7b-61OlbelWhmPCId_PFMs8ddYuFu9t-9E-p3cfgBI32E3vWyFtYlTJUH780Gf-7slPU-SrUwy8HF3SGGmZ1jo6_aQy20bbvGI1BCSh87vpy4jq8xH042r5qEUPYip98Y_oNHnta-Aa7BC3YFmohnJQzzovKFe_Osas6W-MJTF2TCbDTKV4fliK97jfg7w6aDPqv-TDYtVsIlhBDlIHhOopNkvJYxoJZbgUMUKtoJAF1aJP1Ist0pgiVUgDs01ZbsCEGgi6XmCAXqLUqVuYSYQXHXAhtaSZkwggVmmkwslwLxhQnV6jt9nD27hU1Zrvtu_57-AYduefoSbK3qFWuK3MHoUAp7-t34BN51Ljb |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JT8JAFJ4gHtSLCxh35-DRFugynTlXCCoQD5BwI7MCMaEG2sT4633TAVziwVszec1Mpp2-pd_3PYTuBA-bPEi4Z7iBBCVWxGNxHHoyMSYJYq502b2hPyDdUfQ0jscVdL_lwmitS_CZ9u1l-S9fZbKwpbIGjcCdJWQH7YLfj5hja22-u8QqXDpdoSBkLdZIZ_M0teAt6q9v_NFBpXQgnUPU30ztcCOvfpELX378UmX879qOUP2Lqodftk7oGFX04gQdfFMZrKH3tsU0ejnk4VPbmROXASZuw-F2vEUMgSt-cK3pV3jggOErbEu0YJvJGbdizjjNCkvfnWLLO1viEUxdwgmwVSpebpcinPI3ZOB1NOq0h2nXWzdc8OYQReSeZqoV6ChmgQg4NcxwGCBGkpaAvEPppNkyVCUyJEJwSPyUUQZsQg1hly1NhKeousgW-gxhCQedc2VIwkVEQ8IVVWBkmOKUShaeo5rdw8mb09SYrLfv4u_hW7TXHfZ7k97j4PkS7dtn6iCzV6iaLwt9DYFBLm7K9-ETVKa8Kw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Chinese+Control+Conference&rft.atitle=Event-triggered+State+Estimation+for+Dynamics+Networks+with+Stochastic+Coupling+under+Uncertain+Occurrence+Probabilities&rft.au=Zhang%2C+Hongxu&rft.au=Hu%2C+Jun&rft.au=Zou%2C+Lei&rft.date=2018-07-01&rft.pub=Technical+Committee+on+Control+Theory%2C+Chinese+Association+of+Automation&rft.eissn=1934-1768&rft.spage=6283&rft.epage=6288&rft_id=info:doi/10.23919%2FChiCC.2018.8482276&rft.externalDocID=8482276 |