Attentive Generative Adversarial Network for Raindrop Removal from A Single Image

Raindrops adhered to a glass window or camera lens can severely hamper the visibility of a background scene and degrade an image considerably. In this paper, we address the problem by visually removing raindrops, and thus transforming a raindrop degraded image into a clean one. The problem is intrac...

Full description

Saved in:
Bibliographic Details
Published in2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition pp. 2482 - 2491
Main Authors Qian, Rui, Tan, Robby T., Yang, Wenhan, Su, Jiajun, Liu, Jiaying
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.06.2018
Subjects
Online AccessGet full text
ISSN1063-6919
DOI10.1109/CVPR.2018.00263

Cover

Loading…
Abstract Raindrops adhered to a glass window or camera lens can severely hamper the visibility of a background scene and degrade an image considerably. In this paper, we address the problem by visually removing raindrops, and thus transforming a raindrop degraded image into a clean one. The problem is intractable, since first the regions occluded by raindrops are not given. Second, the information about the background scene of the occluded regions is completely lost for most part. To resolve the problem, we apply an attentive generative network using adversarial training. Our main idea is to inject visual attention into both the generative and discriminative networks. During the training, our visual attention learns about raindrop regions and their surroundings. Hence, by injecting this information, the generative network will pay more attention to the raindrop regions and the surrounding structures, and the discriminative network will be able to assess the local consistency of the restored regions. This injection of visual attention to both generative and discriminative networks is the main contribution of this paper. Our experiments show the effectiveness of our approach, which outperforms the state of the art methods quantitatively and qualitatively.
AbstractList Raindrops adhered to a glass window or camera lens can severely hamper the visibility of a background scene and degrade an image considerably. In this paper, we address the problem by visually removing raindrops, and thus transforming a raindrop degraded image into a clean one. The problem is intractable, since first the regions occluded by raindrops are not given. Second, the information about the background scene of the occluded regions is completely lost for most part. To resolve the problem, we apply an attentive generative network using adversarial training. Our main idea is to inject visual attention into both the generative and discriminative networks. During the training, our visual attention learns about raindrop regions and their surroundings. Hence, by injecting this information, the generative network will pay more attention to the raindrop regions and the surrounding structures, and the discriminative network will be able to assess the local consistency of the restored regions. This injection of visual attention to both generative and discriminative networks is the main contribution of this paper. Our experiments show the effectiveness of our approach, which outperforms the state of the art methods quantitatively and qualitatively.
Author Tan, Robby T.
Qian, Rui
Liu, Jiaying
Su, Jiajun
Yang, Wenhan
Author_xml – sequence: 1
  givenname: Rui
  surname: Qian
  fullname: Qian, Rui
– sequence: 2
  givenname: Robby T.
  surname: Tan
  fullname: Tan, Robby T.
– sequence: 3
  givenname: Wenhan
  surname: Yang
  fullname: Yang, Wenhan
– sequence: 4
  givenname: Jiajun
  surname: Su
  fullname: Su, Jiajun
– sequence: 5
  givenname: Jiaying
  surname: Liu
  fullname: Liu, Jiaying
BookMark eNotjMlOwzAURQ0CiVKyZsHGP5DwHMeOvYwiKJUqhjBsKyd-rgwZKidKxd8zru6RztE9Jyf90CMhlwwSxkBfl2-PVZICUwlAKvkRiXSumOBKyiwFfUwWDCSPpWb6jETj-A4_neIqEwvyVEwT9pOfka6wx2B-sbAzhtEEb1p6j9NhCB_UDYFWxvc2DHtaYTfM39KFoaMFffb9rkW67swOL8ipM-2I0f8uyevtzUt5F28eVuuy2MSe5WKKUUODCqUzTliZgrCc1caiQ2ugyUxWp3kDwuXSWtEIlE2tlNJa1DVkinO-JFd_vx4Rt_vgOxM-t0rkikvGvwBhUFKm
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/CVPR.2018.00263
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE/IET Electronic Library
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISBN 9781538664209
1538664208
EISSN 1063-6919
EndPage 2491
ExternalDocumentID 8578361
Genre orig-research
GroupedDBID 6IE
6IH
6IL
6IN
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IJVOP
OCL
RIE
RIL
RIO
ID FETCH-LOGICAL-i175t-e90ce8e6faf5d6205d31badefeda0c4a4b27c05f76dd5c5e6cb888995bb048333
IEDL.DBID RIE
IngestDate Wed Aug 27 02:52:16 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-e90ce8e6faf5d6205d31badefeda0c4a4b27c05f76dd5c5e6cb888995bb048333
PageCount 10
ParticipantIDs ieee_primary_8578361
PublicationCentury 2000
PublicationDate 2018-Jun
PublicationDateYYYYMMDD 2018-06-01
PublicationDate_xml – month: 06
  year: 2018
  text: 2018-Jun
PublicationDecade 2010
PublicationTitle 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition
PublicationTitleAbbrev CVPR
PublicationYear 2018
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0002683845
ssj0003211698
Score 2.6084352
Snippet Raindrops adhered to a glass window or camera lens can severely hamper the visibility of a background scene and degrade an image considerably. In this paper,...
SourceID ieee
SourceType Publisher
StartPage 2482
SubjectTerms Cameras
Generative adversarial networks
Glass
Lenses
Rain
Shape
Visualization
Title Attentive Generative Adversarial Network for Raindrop Removal from A Single Image
URI https://ieeexplore.ieee.org/document/8578361
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LTsJAFJ0gK1eoYHxnFi4ttJ3OtLMkRIImEEQx7Mg8bhOjUALFhV_v3LaiMS7cTbvpZB69r3POJeQ6MAYY48ZDNTAvAh17MtaBJyIZKCaV4hpTA8ORGEyj-xmf1cjNjgsDAAX4DNo4LGr5NjNbTJV1Eo6cAxfr7LnAreRq7fIpoUhYUlXI8Jm5yEbIpFLzCXzZ6T2PJ4jlKsCTKPv5o51KYU36DTL8mkcJInltb3PdNh-_JBr_O9ED0vrm7dHxziIdkhosj0ijcjRpdY03TfLQzXNECb0DLWWni2HRm3mj8ETSUYkOp86lpVgCsutsRSewyNzBpEhJoV366L7xBvRu4X5JLTLt3z71Bl7VW8F7cQ5D7oH0DSQgUpVyK0KfWxZoZSEFq3wTqUiHsfF5GgtrueEgjHaxspRcaxShZ-yY1JfZEk4I1SKFJA10JMC5fz4oGVqe6jA0NokjiE9JE1dovirlM-bV4pz9_fqc7OMelWisC1LP11u4dHY_11fFhn8CFgmtmg
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT8IwGG4IHvSECsZve_DoYFvXbj0SIgEFggiGG-nHu4QojMDw4K-33SYa48Fbt8uafuz9ep7nRejWUwoIocqxamBOADJ0eCg9hwXcE4QLQaVNDfQHrDMJHqZ0WkJ3Oy4MAGTgM6jbYVbL14na2lRZI6KWc2BinT1j96mXs7V2GRWfRSQqamT2mZjYhvGo0PPxXN5ovQxHFs2VwSet8OePhiqZPWlXUP9rJjmM5LW-TWVdffwSafzvVA9R7Zu5h4c7m3SESrA8RpXC1cTFRd5U0VMzTS1O6B1wLjydDbPuzBthzyQe5PhwbJxabItAep2s8AgWiTma2JJScBM_m2-8Ae4uzE-phibt-3Gr4xTdFZy5cRlSB7irIAIWi5hq5rtUE08KDTFo4apABNIPlUvjkGlNFQWmpImWOadSWhl6Qk5QeZks4RRhyWKIYk8GDIwD6ILgvqax9H2lozCA8AxV7QrNVrmAxqxYnPO_X9-g_c6435v1uoPHC3Rg9yvHZl2icrrewpXxAlJ5nW3-J1MPsOM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2018+IEEE%2FCVF+Conference+on+Computer+Vision+and+Pattern+Recognition&rft.atitle=Attentive+Generative+Adversarial+Network+for+Raindrop+Removal+from+A+Single+Image&rft.au=Qian%2C+Rui&rft.au=Tan%2C+Robby+T.&rft.au=Yang%2C+Wenhan&rft.au=Su%2C+Jiajun&rft.date=2018-06-01&rft.pub=IEEE&rft.eissn=1063-6919&rft.spage=2482&rft.epage=2491&rft_id=info:doi/10.1109%2FCVPR.2018.00263&rft.externalDocID=8578361