Contour tracking based on a synergistic approach of geodesic active contours and conditional random fields
This paper presents a new general framework for contour tracking based on the synergy of two powerful segmentation tools, namely, spatial temporal conditional random fields (CRFs) and geodesic active contours (GACs). The contours of targets are modeled using a level set representation. The evolution...
Saved in:
Published in | 2010 IEEE International Conference on Image Processing pp. 2801 - 2804 |
---|---|
Main Authors | , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.09.2010
|
Subjects | |
Online Access | Get full text |
ISBN | 9781424479924 1424479924 |
ISSN | 1522-4880 |
DOI | 10.1109/ICIP.2010.5651053 |
Cover
Abstract | This paper presents a new general framework for contour tracking based on the synergy of two powerful segmentation tools, namely, spatial temporal conditional random fields (CRFs) and geodesic active contours (GACs). The contours of targets are modeled using a level set representation. The evolution of the level sets toward the target contours is formulated as one of the joint region-based (CRF) and boundary-based (GAC) segmentations under a unified Bayesian framework. A variational inference technique is used to solve this otherwise intractable inference problem, leading to approximate MAP solutions of both the new 3D spatial temporal CRF and the GAC model. The tracking result of the previous frame is used to initialize the curve in the current frame. Typical contour tracking problems are considered and experimental results are given to illustrate the robustness of the method against noise and its accurate performance in moving objects boundary localization. |
---|---|
AbstractList | This paper presents a new general framework for contour tracking based on the synergy of two powerful segmentation tools, namely, spatial temporal conditional random fields (CRFs) and geodesic active contours (GACs). The contours of targets are modeled using a level set representation. The evolution of the level sets toward the target contours is formulated as one of the joint region-based (CRF) and boundary-based (GAC) segmentations under a unified Bayesian framework. A variational inference technique is used to solve this otherwise intractable inference problem, leading to approximate MAP solutions of both the new 3D spatial temporal CRF and the GAC model. The tracking result of the previous frame is used to initialize the curve in the current frame. Typical contour tracking problems are considered and experimental results are given to illustrate the robustness of the method against noise and its accurate performance in moving objects boundary localization. |
Author | Jiading Gai Stevenson, R L |
Author_xml | – sequence: 1 surname: Jiading Gai fullname: Jiading Gai organization: Dept. of Electr. Eng., Univ. of Notre Dame, Notre Dame, IN, USA – sequence: 2 givenname: R L surname: Stevenson fullname: Stevenson, R L organization: Dept. of Electr. Eng., Univ. of Notre Dame, Notre Dame, IN, USA |
BookMark | eNpVkMtOwzAURI0oEm3pByA2_oGU61cSL1HEo1IlWMC6urFvi0trV3FA6t-Tim5Yjc5oZhYzYaOYIjF2K2AuBNj7RbN4m0sY0JRGgFEXbGarWmipdWWtri__sdQjNhZGykLXNVyzSc5bgKGvxJhtmxT79N3xvkP3FeKGt5jJ8xQ58nyM1G1C7oPjeDh0Cd0nT2u-oeQpn0zXhx_i7m8jc4z-BD70IUXc8W4w0p6vA-18vmFXa9xlmp11yj6eHt-bl2L5-rxoHpZFEJXpC1K2BI2udtIKaVGBEpUrJVRkUUpQvqW2BCW1aa304C0p54e40UgIpZqyu7_dQESrQxf22B1X56vUL10xXc0 |
ContentType | Conference Proceeding |
DBID | 6IE 6IH CBEJK RIE RIO |
DOI | 10.1109/ICIP.2010.5651053 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences |
EISBN | 9781424479948 1424479940 1424479932 9781424479931 |
EndPage | 2804 |
ExternalDocumentID | 5651053 |
Genre | orig-research |
GroupedDBID | 29O 6IE 6IF 6IH 6IK 6IL 6IM 6IN AAJGR AAWTH ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IPLJI M43 OCL RIE RIL RIO RNS |
ID | FETCH-LOGICAL-i175t-e39604ac8c29129a30317c6207e9a2203dbeb603245b92d0d9e3cdc8c54aea063 |
IEDL.DBID | RIE |
ISBN | 9781424479924 1424479924 |
ISSN | 1522-4880 |
IngestDate | Wed Aug 27 02:59:32 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i175t-e39604ac8c29129a30317c6207e9a2203dbeb603245b92d0d9e3cdc8c54aea063 |
PageCount | 4 |
ParticipantIDs | ieee_primary_5651053 |
PublicationCentury | 2000 |
PublicationDate | 2010-Sept. |
PublicationDateYYYYMMDD | 2010-09-01 |
PublicationDate_xml | – month: 09 year: 2010 text: 2010-Sept. |
PublicationDecade | 2010 |
PublicationTitle | 2010 IEEE International Conference on Image Processing |
PublicationTitleAbbrev | ICIP |
PublicationYear | 2010 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0020131 ssj0000527420 |
Score | 1.7523537 |
Snippet | This paper presents a new general framework for contour tracking based on the synergy of two powerful segmentation tools, namely, spatial temporal conditional... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 2801 |
SubjectTerms | 3D conditional random field Active contours belief propagation Contour tracking Deformable models geodesic active contours Level set level set methods motion detection Pixel Target tracking Three dimensional displays variational inference |
Title | Contour tracking based on a synergistic approach of geodesic active contours and conditional random fields |
URI | https://ieeexplore.ieee.org/document/5651053 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELZKJ6YCLeItD4ykdfP2XFG1SEUdqNStutgXVBAJatIBfj1n54FADGyxFeVhXXLfPb7PjN1KHUjPV9JJUaHj-xA7oEE4fpgEKg5TdMEQnBeP4WzlP6yDdYfdtVwYRLTNZzg0h7aWr3O1N6myEYEPggPeATsgM6u4Wm0-RQSm6CjaYMvoyFitVAq2jJE2pK5IUsTRaD0147rcORZyNJ_Ml1XHV323H9uuWK8z7bFF87xVs8nrcF8mQ_X5S8rxvy90xAbf_D6-bD3XMetgdsJ6NSDl9ede9NmL0a4iY-PlDpTJqXPj9DTPMw68-DC0QavzzBtlcp6n_BlzjYWZtL9SrqprFBwybQZ6W6UfOXlJnb9x20NXDNhqev80mTn15gzOlhBH6aBnZF1AxcqVhBmAXOE4UqErIpTgusLTCSahILwWJNLVQkv0lKbTAx8QCBidsm6WZ3jGuJQJASMcq8hPKdwDCdpPowCUUiJOIT1nfbN0m_dKf2NTr9rF39OX7LCq8Js-sCvWLXd7vCbgUCY31mK-AO_Hvac |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT8IwGG4QD3pCBeO3PXh0ULZ2W89EAgqEAyTcSNe-M2jcDBsH_fW23YfRePC2Nss-mnd7n_fjeYrQHVeMe1RyJwYJDqUidIQSxKF-xGTox-AKQ3CezvzRkj6u2KqB7msuDADY5jPomkNby1ep3JlUWU-DDw0HvD20r_0-ZQVbq86oEGbKjqQOt4ySjFVL1eGWMdOK1hVwHXNUak_VuCx49gnvjQfjedHzVd7vx8Yr1u8MW2haPXHRbvLa3eVRV37-EnP87ysdoc43ww_Pa991jBqQnKBWCUlx-cFnbfRi1Ku0ueF8K6TJqmPj9hROEyxw9mGIg1bpGVfa5DiN8TOkCjIzaX-mWBbXyLBIlBmoTZGAxNpPqvQN2y66rIOWw4fFYOSU2zM4G405cgc8I-wiZChdrlGD0M6wH0jfJQFw4brEUxFEPtGIjUXcVURx8KTSpzMqQGhodIqaSZrAGcKcRxoaQV8GNNYBn-BC0ThgQkpJwljE56htlm79XihwrMtVu_h7-hYdjBbTyXoynj1dosOi3m-6wq5QM9_u4FrDiDy6sdbzBRDTwPQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2010+IEEE+International+Conference+on+Image+Processing&rft.atitle=Contour+tracking+based+on+a+synergistic+approach+of+geodesic+active+contours+and+conditional+random+fields&rft.au=Jiading+Gai&rft.au=Stevenson%2C+R+L&rft.date=2010-09-01&rft.pub=IEEE&rft.isbn=9781424479924&rft.issn=1522-4880&rft.spage=2801&rft.epage=2804&rft_id=info:doi/10.1109%2FICIP.2010.5651053&rft.externalDocID=5651053 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1522-4880&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1522-4880&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1522-4880&client=summon |