Semi-supervised adapted HMMs for unusual event detection

We address the problem of temporal unusual event detection. Unusual events are characterized by a number of features (rarity, unexpectedness, and relevance) that limit the application of traditional supervised model-based approaches. We propose a semi-supervised adapted hidden Markov model (HMM) fra...

Full description

Saved in:
Bibliographic Details
Published in2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05) Vol. 1; pp. 611 - 618 vol. 1
Main Authors Dong Zhang, Gatica-Perez, D., Bengio, S., McCowan, I.
Format Conference Proceeding
LanguageEnglish
Published IEEE 2005
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We address the problem of temporal unusual event detection. Unusual events are characterized by a number of features (rarity, unexpectedness, and relevance) that limit the application of traditional supervised model-based approaches. We propose a semi-supervised adapted hidden Markov model (HMM) framework, in which usual event models are first learned from a large amount of (commonly available) training data, while unusual event models are learned by Bayesian adaptation in an unsupervised manner. The proposed framework has an iterative structure, which adapts a new unusual event model at each iteration. We show that such a framework can address problems due to the scarcity of training data and the difficulty in pre-defining unusual events. Experiments on audio, visual, and audiovisual data streams illustrate its effectiveness, compared with both supervised and unsupervised baseline methods.
AbstractList We address the problem of temporal unusual event detection. Unusual events are characterized by a number of features (rarity, unexpectedness, and relevance) that limit the application of traditional supervised model-based approaches. We propose a semi-supervised adapted hidden Markov model (HMM) framework, in which usual event models are first learned from a large amount of (commonly available) training data, while unusual event models are learned by Bayesian adaptation in an unsupervised manner. The proposed framework has an iterative structure, which adapts a new unusual event model at each iteration. We show that such a framework can address problems due to the scarcity of training data and the difficulty in pre-defining unusual events. Experiments on audio, visual, and audiovisual data streams illustrate its effectiveness, compared with both supervised and unsupervised baseline methods.
Author Dong Zhang
McCowan, I.
Gatica-Perez, D.
Bengio, S.
Author_xml – sequence: 1
  surname: Dong Zhang
  fullname: Dong Zhang
  organization: XIDIAP Res. Inst., Martigny, Switzerland
– sequence: 2
  givenname: D.
  surname: Gatica-Perez
  fullname: Gatica-Perez, D.
  organization: XIDIAP Res. Inst., Martigny, Switzerland
– sequence: 3
  givenname: S.
  surname: Bengio
  fullname: Bengio, S.
  organization: XIDIAP Res. Inst., Martigny, Switzerland
– sequence: 4
  givenname: I.
  surname: McCowan
  fullname: McCowan, I.
  organization: XIDIAP Res. Inst., Martigny, Switzerland
BookMark eNpNjE1Lw0AUABetYFt79OQlfyDpvn2bt9mjBG2Flopf17JmX2ClTUI2KfjvLejBucxhYGZi0rQNC3ELMgOQdll-PL9kSso8Q6ALMQVJmJIFeylm0pDNFRqlJv_CtVjE-CXPoMVCq6koXvkY0jh23J9CZJ8477rh7PV2G5O67ZOxGePoDgmfuBkSzwNXQ2ibG3FVu0PkxZ_n4v3x4a1cp5vd6qm836QBTD6kLKkCB5xbr6ggIjQS2TsE9NY5nZu6qp3nT8-VNrW3YBihMBoRKtIe5-Lu9xuYed_14ej67z1oMqg0_gBKpkm5
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/CVPR.2005.316
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Computer Science
EISSN 1063-6919
EndPage 618 vol. 1
ExternalDocumentID 1467324
Genre orig-research
GroupedDBID 23M
29F
29O
6IE
6IH
6IK
ABDPE
ACGFS
ALMA_UNASSIGNED_HOLDINGS
CBEJK
IPLJI
M43
RIE
RIO
RNS
ID FETCH-LOGICAL-i175t-e06c1a1e59d2686663703eda313d9aa457fcfadebdec47fd917e31874331c64d3
IEDL.DBID RIE
ISBN 0769523722
9780769523729
ISSN 1063-6919
IngestDate Wed Aug 27 02:18:22 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-e06c1a1e59d2686663703eda313d9aa457fcfadebdec47fd917e31874331c64d3
ParticipantIDs ieee_primary_1467324
PublicationCentury 2000
PublicationDate 20050000
PublicationDateYYYYMMDD 2005-01-01
PublicationDate_xml – year: 2005
  text: 20050000
PublicationDecade 2000
PublicationTitle 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05)
PublicationTitleAbbrev CVPR
PublicationYear 2005
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0000393842
ssj0023720
ssj0003211698
Score 2.0855598
Snippet We address the problem of temporal unusual event detection. Unusual events are characterized by a number of features (rarity, unexpectedness, and relevance)...
SourceID ieee
SourceType Publisher
StartPage 611
SubjectTerms Ambient intelligence
Bayesian methods
Computer vision
Data mining
Event detection
Hidden Markov models
Information management
Streaming media
Surveillance
Training data
Title Semi-supervised adapted HMMs for unusual event detection
URI https://ieeexplore.ieee.org/document/1467324
Volume 1
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT4MwFG62nTxN3Yy_04NHuwmFQs-Ly2KCWdSZ3ZZCX5NFZYvAxb_e18KYMR680cIBWtp-3_vxPUJuwDc6NhCwLAxjFvjgM6lNytII0YKWmSeNzUZOHsVsETwsw2WH3La5MADggs9gZC-dL19vssqaysZ2VSMA6JIuErc6V6u1p9gc07ihebbNkdkI2XoUfFuNxXk-BWdCerKm8DK0N_xGiWfXlnsxzvHkdf5Um164rYn-owSLO4GmfZLs3r0OPHkbVWU6yr5-yTr-9-MOyXCf60fn7Sl2RDqQH5N-A05ps_QL7NrVf9j1DUj8DB9rVlRbu98U-LTSaosIls6SpKCIhmmVV0Wl3qmTiaIaShf4lQ_JYnr_MpmxphIDWyO8KBncicxTHoRS-yJGxsNxowCtuIfzqVQQRiYzSkOqIQsio5EDWttqZNOxMhFofkJ6-SaHU0IlEtYw4sLoAMmSl0ovRYyjeMqtGqKGMzKwY7Pa1mIbq2ZYzv_uviAHTkvV2UQuSa_8rOAKUUKZXrvf4xtyw7LE
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV25TsQwEB1xFFBxixsXUHohdi4XVBxajkWIS3SLE0-kFRBWJBGCb-FX-DfGTnZBiBaJLnaiKPY49pvrDcAmiszEGfo8DYKY-wIFVyZLeBIRWjAq9VRms5E7Z2H72j--DW5H4H2YC4OILvgMW_bS-fLNU1pZU9m2_asJADQhlCf4-kIKWrF7tE_S3BLi8OBqr82bGgK8RwdjyXEnTD3tYaCMCGPC6pKWOBotPfoSrf0gytJMG0wMpn6UGdJerFUwsolEaegbSe8dhXHCGYGos8OGFhyb1Ro3iqVtS9KlQjX0YQhb_8X5WkPJQ-Wp2migAntDNNw_g7b6ov_c3rs5v6iNPdJWYf9W9MWdeYdT8DGYrTrU5b5VlUkrfftBJPlfp3Ma5r-yGdn58JyegRHMZ2Gqgd-s2dwK6hpUuBj0zUF8iY89XlR9u6MW9LQ2uk8YnbU7nYIR3mdVXhWVfmCOCIsZLF1oWz4P138ysAUYy59yXASmSCUPIhlmxid10EuUlxCK0zKRlu_R4BLMWVl0-zWdSLcRw_Lv3Rsw0b7qnHZPj85OVmDSMcc6C9AqjJXPFa4RJiqTdbc0Gdz9tfA-AYiBETw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2005+IEEE+Computer+Society+Conference+on+Computer+Vision+and+Pattern+Recognition+%28CVPR%2705%29&rft.atitle=Semi-supervised+adapted+HMMs+for+unusual+event+detection&rft.au=Dong+Zhang&rft.au=Gatica-Perez%2C+D.&rft.au=Bengio%2C+S.&rft.au=McCowan%2C+I.&rft.date=2005-01-01&rft.pub=IEEE&rft.isbn=9780769523729&rft.issn=1063-6919&rft.eissn=1063-6919&rft.volume=1&rft.spage=611&rft.epage=618+vol.+1&rft_id=info:doi/10.1109%2FCVPR.2005.316&rft.externalDocID=1467324
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6919&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6919&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6919&client=summon