Semi-supervised adapted HMMs for unusual event detection
We address the problem of temporal unusual event detection. Unusual events are characterized by a number of features (rarity, unexpectedness, and relevance) that limit the application of traditional supervised model-based approaches. We propose a semi-supervised adapted hidden Markov model (HMM) fra...
Saved in:
Published in | 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05) Vol. 1; pp. 611 - 618 vol. 1 |
---|---|
Main Authors | , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
2005
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We address the problem of temporal unusual event detection. Unusual events are characterized by a number of features (rarity, unexpectedness, and relevance) that limit the application of traditional supervised model-based approaches. We propose a semi-supervised adapted hidden Markov model (HMM) framework, in which usual event models are first learned from a large amount of (commonly available) training data, while unusual event models are learned by Bayesian adaptation in an unsupervised manner. The proposed framework has an iterative structure, which adapts a new unusual event model at each iteration. We show that such a framework can address problems due to the scarcity of training data and the difficulty in pre-defining unusual events. Experiments on audio, visual, and audiovisual data streams illustrate its effectiveness, compared with both supervised and unsupervised baseline methods. |
---|---|
AbstractList | We address the problem of temporal unusual event detection. Unusual events are characterized by a number of features (rarity, unexpectedness, and relevance) that limit the application of traditional supervised model-based approaches. We propose a semi-supervised adapted hidden Markov model (HMM) framework, in which usual event models are first learned from a large amount of (commonly available) training data, while unusual event models are learned by Bayesian adaptation in an unsupervised manner. The proposed framework has an iterative structure, which adapts a new unusual event model at each iteration. We show that such a framework can address problems due to the scarcity of training data and the difficulty in pre-defining unusual events. Experiments on audio, visual, and audiovisual data streams illustrate its effectiveness, compared with both supervised and unsupervised baseline methods. |
Author | Dong Zhang McCowan, I. Gatica-Perez, D. Bengio, S. |
Author_xml | – sequence: 1 surname: Dong Zhang fullname: Dong Zhang organization: XIDIAP Res. Inst., Martigny, Switzerland – sequence: 2 givenname: D. surname: Gatica-Perez fullname: Gatica-Perez, D. organization: XIDIAP Res. Inst., Martigny, Switzerland – sequence: 3 givenname: S. surname: Bengio fullname: Bengio, S. organization: XIDIAP Res. Inst., Martigny, Switzerland – sequence: 4 givenname: I. surname: McCowan fullname: McCowan, I. organization: XIDIAP Res. Inst., Martigny, Switzerland |
BookMark | eNpNjE1Lw0AUABetYFt79OQlfyDpvn2bt9mjBG2Flopf17JmX2ClTUI2KfjvLejBucxhYGZi0rQNC3ELMgOQdll-PL9kSso8Q6ALMQVJmJIFeylm0pDNFRqlJv_CtVjE-CXPoMVCq6koXvkY0jh23J9CZJ8477rh7PV2G5O67ZOxGePoDgmfuBkSzwNXQ2ibG3FVu0PkxZ_n4v3x4a1cp5vd6qm836QBTD6kLKkCB5xbr6ggIjQS2TsE9NY5nZu6qp3nT8-VNrW3YBihMBoRKtIe5-Lu9xuYed_14ej67z1oMqg0_gBKpkm5 |
ContentType | Conference Proceeding |
DBID | 6IE 6IH CBEJK RIE RIO |
DOI | 10.1109/CVPR.2005.316 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Computer Science |
EISSN | 1063-6919 |
EndPage | 618 vol. 1 |
ExternalDocumentID | 1467324 |
Genre | orig-research |
GroupedDBID | 23M 29F 29O 6IE 6IH 6IK ABDPE ACGFS ALMA_UNASSIGNED_HOLDINGS CBEJK IPLJI M43 RIE RIO RNS |
ID | FETCH-LOGICAL-i175t-e06c1a1e59d2686663703eda313d9aa457fcfadebdec47fd917e31874331c64d3 |
IEDL.DBID | RIE |
ISBN | 0769523722 9780769523729 |
ISSN | 1063-6919 |
IngestDate | Wed Aug 27 02:18:22 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i175t-e06c1a1e59d2686663703eda313d9aa457fcfadebdec47fd917e31874331c64d3 |
ParticipantIDs | ieee_primary_1467324 |
PublicationCentury | 2000 |
PublicationDate | 20050000 |
PublicationDateYYYYMMDD | 2005-01-01 |
PublicationDate_xml | – year: 2005 text: 20050000 |
PublicationDecade | 2000 |
PublicationTitle | 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05) |
PublicationTitleAbbrev | CVPR |
PublicationYear | 2005 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0000393842 ssj0023720 ssj0003211698 |
Score | 2.0855598 |
Snippet | We address the problem of temporal unusual event detection. Unusual events are characterized by a number of features (rarity, unexpectedness, and relevance)... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 611 |
SubjectTerms | Ambient intelligence Bayesian methods Computer vision Data mining Event detection Hidden Markov models Information management Streaming media Surveillance Training data |
Title | Semi-supervised adapted HMMs for unusual event detection |
URI | https://ieeexplore.ieee.org/document/1467324 |
Volume | 1 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT4MwFG62nTxN3Yy_04NHuwmFQs-Ly2KCWdSZ3ZZCX5NFZYvAxb_e18KYMR680cIBWtp-3_vxPUJuwDc6NhCwLAxjFvjgM6lNytII0YKWmSeNzUZOHsVsETwsw2WH3La5MADggs9gZC-dL19vssqaysZ2VSMA6JIuErc6V6u1p9gc07ihebbNkdkI2XoUfFuNxXk-BWdCerKm8DK0N_xGiWfXlnsxzvHkdf5Um164rYn-owSLO4GmfZLs3r0OPHkbVWU6yr5-yTr-9-MOyXCf60fn7Sl2RDqQH5N-A05ps_QL7NrVf9j1DUj8DB9rVlRbu98U-LTSaosIls6SpKCIhmmVV0Wl3qmTiaIaShf4lQ_JYnr_MpmxphIDWyO8KBncicxTHoRS-yJGxsNxowCtuIfzqVQQRiYzSkOqIQsio5EDWttqZNOxMhFofkJ6-SaHU0IlEtYw4sLoAMmSl0ovRYyjeMqtGqKGMzKwY7Pa1mIbq2ZYzv_uviAHTkvV2UQuSa_8rOAKUUKZXrvf4xtyw7LE |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV25TsQwEB1xFFBxixsXUHohdi4XVBxajkWIS3SLE0-kFRBWJBGCb-FX-DfGTnZBiBaJLnaiKPY49pvrDcAmiszEGfo8DYKY-wIFVyZLeBIRWjAq9VRms5E7Z2H72j--DW5H4H2YC4OILvgMW_bS-fLNU1pZU9m2_asJADQhlCf4-kIKWrF7tE_S3BLi8OBqr82bGgK8RwdjyXEnTD3tYaCMCGPC6pKWOBotPfoSrf0gytJMG0wMpn6UGdJerFUwsolEaegbSe8dhXHCGYGos8OGFhyb1Ro3iqVtS9KlQjX0YQhb_8X5WkPJQ-Wp2migAntDNNw_g7b6ov_c3rs5v6iNPdJWYf9W9MWdeYdT8DGYrTrU5b5VlUkrfftBJPlfp3Ma5r-yGdn58JyegRHMZ2Gqgd-s2dwK6hpUuBj0zUF8iY89XlR9u6MW9LQ2uk8YnbU7nYIR3mdVXhWVfmCOCIsZLF1oWz4P138ysAUYy59yXASmSCUPIhlmxid10EuUlxCK0zKRlu_R4BLMWVl0-zWdSLcRw_Lv3Rsw0b7qnHZPj85OVmDSMcc6C9AqjJXPFa4RJiqTdbc0Gdz9tfA-AYiBETw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2005+IEEE+Computer+Society+Conference+on+Computer+Vision+and+Pattern+Recognition+%28CVPR%2705%29&rft.atitle=Semi-supervised+adapted+HMMs+for+unusual+event+detection&rft.au=Dong+Zhang&rft.au=Gatica-Perez%2C+D.&rft.au=Bengio%2C+S.&rft.au=McCowan%2C+I.&rft.date=2005-01-01&rft.pub=IEEE&rft.isbn=9780769523729&rft.issn=1063-6919&rft.eissn=1063-6919&rft.volume=1&rft.spage=611&rft.epage=618+vol.+1&rft_id=info:doi/10.1109%2FCVPR.2005.316&rft.externalDocID=1467324 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6919&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6919&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6919&client=summon |