Efficient approaches for accuracy improvement of breast cancer classification using wisconsin database

Breast cancer is the second leading cause of death for women all over the world. But early detection and prevention can significantly reduce the chances of death. This paper deals with different statistical and deep learning analysis of Wisconsin Breast Cancer Database for improving the accuracy in...

Full description

Saved in:
Bibliographic Details
Published in2017 IEEE Region 10 Humanitarian Technology Conference (R10-HTC) pp. 792 - 797
Main Authors Shahnaz, Celia, Hossain, Jubaer, Fattah, Shaikh Anowarul, Ghosh, Shajib, Khan, Asir Intisar
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.12.2017
Subjects
Online AccessGet full text
ISSN2572-7621
DOI10.1109/R10-HTC.2017.8289075

Cover

Abstract Breast cancer is the second leading cause of death for women all over the world. But early detection and prevention can significantly reduce the chances of death. This paper deals with different statistical and deep learning analysis of Wisconsin Breast Cancer Database for improving the accuracy in detection and classification of breast cancer based on different attributes. Applying Naïve Bayes, SVM, Logistic Regression, KNN, Random Forest, MLP and CNN classifiers, higher accuracy is obtained which is up to 98% to 99%.
AbstractList Breast cancer is the second leading cause of death for women all over the world. But early detection and prevention can significantly reduce the chances of death. This paper deals with different statistical and deep learning analysis of Wisconsin Breast Cancer Database for improving the accuracy in detection and classification of breast cancer based on different attributes. Applying Naïve Bayes, SVM, Logistic Regression, KNN, Random Forest, MLP and CNN classifiers, higher accuracy is obtained which is up to 98% to 99%.
Author Hossain, Jubaer
Khan, Asir Intisar
Fattah, Shaikh Anowarul
Ghosh, Shajib
Shahnaz, Celia
Author_xml – sequence: 1
  givenname: Celia
  surname: Shahnaz
  fullname: Shahnaz, Celia
  organization: Department of Electrical and Electronic Engineering, Bangladesh University of Engineering and Technology, Dhaka, Bangladesh
– sequence: 2
  givenname: Jubaer
  surname: Hossain
  fullname: Hossain, Jubaer
  organization: Department of Electrical and Electronic Engineering, Bangladesh University of Engineering and Technology, Dhaka, Bangladesh
– sequence: 3
  givenname: Shaikh Anowarul
  surname: Fattah
  fullname: Fattah, Shaikh Anowarul
  organization: Department of Electrical and Electronic Engineering, Bangladesh University of Engineering and Technology, Dhaka, Bangladesh
– sequence: 4
  givenname: Shajib
  surname: Ghosh
  fullname: Ghosh, Shajib
  organization: Department of Electrical and Electronic Engineering, Bangladesh University of Engineering and Technology, Dhaka, Bangladesh
– sequence: 5
  givenname: Asir Intisar
  surname: Khan
  fullname: Khan, Asir Intisar
  organization: Department of Electrical and Electronic Engineering, Bangladesh University of Engineering and Technology, Dhaka, Bangladesh
BookMark eNotUNtKAzEUjKJgrf0CfcgPbM1Jmk32UUpthYIg9bmcTU400mZLslX6967Yp7kwDMPcsqvUJWLsAcQUQDSPbyCq1WY-lQLM1ErbCKMv2KQxFrSytQSj5SUbSW1kZQZ5wyalfAkhFDRC1GrEwiKE6CKlnuPhkDt0n1R46DJH544Z3YnH_eB_0_4v0wXeZsLSc4fJUeZuh6XEoQL72CV-LDF98J9YXJcGyj322GKhO3YdcFdocsYxe39ebOarav26fJk_ras4TO0r34qZDN62TU0Ivg16hr7WVsmAMFiNmSlJ3tTeAimkFrQLQnoFaLTRoMbs_r83EtH2kOMe82l7fkb9AnV7XD8
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/R10-HTC.2017.8289075
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Social Welfare & Social Work
Engineering
EISBN 9781538621752
1538621754
EISSN 2572-7621
EndPage 797
ExternalDocumentID 8289075
Genre orig-research
GroupedDBID 6IE
6IF
6IL
6IN
AAJGR
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
OCL
RIE
RIL
ID FETCH-LOGICAL-i175t-db042fd8b96ea1dbf54ad65832fa16ea97432ed76d81e3aeb15cf02d31a757513
IEDL.DBID RIE
IngestDate Wed Aug 27 02:51:31 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-db042fd8b96ea1dbf54ad65832fa16ea97432ed76d81e3aeb15cf02d31a757513
PageCount 6
ParticipantIDs ieee_primary_8289075
PublicationCentury 2000
PublicationDate 2017-Dec.
PublicationDateYYYYMMDD 2017-12-01
PublicationDate_xml – month: 12
  year: 2017
  text: 2017-Dec.
PublicationDecade 2010
PublicationTitle 2017 IEEE Region 10 Humanitarian Technology Conference (R10-HTC)
PublicationTitleAbbrev R10-HTC
PublicationYear 2017
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0003190063
ssj0001968470
Score 1.7677071
Snippet Breast cancer is the second leading cause of death for women all over the world. But early detection and prevention can significantly reduce the chances of...
SourceID ieee
SourceType Publisher
StartPage 792
SubjectTerms Algorithm design and analysis
algorithms
attributes
Breast cancer
Classification algorithms
Convolutional neural networks
deep learning
diagnosis
neural network
Support vector machines
Title Efficient approaches for accuracy improvement of breast cancer classification using wisconsin database
URI https://ieeexplore.ieee.org/document/8289075
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF5qT3pR24qPKnsQTybdvDbNubQUQRFpsbeyr0ippJImiP56ZzZpq-LBWzKQZdmdzDcz-80sIdcqUNIPpXF8ISFA8XnkJH2ZOjIMEI94LJVl-T7w8TS8m0WzBrnd1sIYYyz5zLj4aM_y9UqVmCrrYXQAELdH9kDNqlqtXT4l4WBo2fYdVAvht66W81jSewKLM54MkM4Vu_VQP-5UsZAyOiT3m8lUTJKlWxbSVZ-_-jT-d7ZHpLMr3qOPW1g6Jg2TtcjBt76DLdKtinLps3lNRW7oDd0IVvmyTdKh7SsBo9NNy3GzpuDdUqFUmQv1QRc2F2FTi3SVUonU9oIqVKGcKvTIkYJkd50itf6Fvi_WCsm4GUVSKoJnh0xHw8lg7NT3MTgLcDIKR0v4w1Pdlwk3wtMyjUKhwYMJ_FR4IILQJPCNjrnueyYQgAKRSpmvA0_EeLwTnJBmtsrMKaFcg41lOlCKi5BJJhjT2gaExsDH8Rlp44LO36qWG_N6Lc__Fl-QfdzUimXSJc0iL80l-AqFvLJK8gW6d79V
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8JAEJ4gHtSLChgfqHswniz2XTgTCCoQYyByI_uqIRhqSonRX-_MlocaD97aSbrZ7E7nm5n9ZhbgSnpSuL7QlssFBihuGFiNuogt4XuER2EkpGH59sPO0L8fBaMC3KxrYbTWhnyma_RozvJVIheUKrul6AAhbgu2Eff9IK_W2mRUGiGaWnv9jspFALysl3Psxu0T2pzOoEmErqi2HOzHrSoGVNr70FtNJ-eSTGuLTNTk569Ojf-d7wFUNuV77HENTIdQ0LMS7H3rPFiCal6Wy571a8xTza7ZSpCk0zLELdNZAkdnq6bjes7Qv2VcykXK5QebmGyESS6yJGaCyO0Zk6REKZPkkxMJyew7I3L9C3ufzCXRcWeMaKkEnxUYtluDZsda3shgTdDNyCwl8B-PVV00Qs0dJeLA5wp9GM-NuYMiDE48V6soVHVHexxxIJCx7SrP4REd8HhHUJwlM30MLFRoZW3lSRly3xY2t22lTEioNX4cnUCZFnT8ljfdGC_X8vRv8SXsdAa97rh71384g13a4JxzUoVili70OXoOmbgwCvMF6P_Cog
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2017+IEEE+Region+10+Humanitarian+Technology+Conference+%28R10-HTC%29&rft.atitle=Efficient+approaches+for+accuracy+improvement+of+breast+cancer+classification+using+wisconsin+database&rft.au=Shahnaz%2C+Celia&rft.au=Hossain%2C+Jubaer&rft.au=Fattah%2C+Shaikh+Anowarul&rft.au=Ghosh%2C+Shajib&rft.date=2017-12-01&rft.pub=IEEE&rft.eissn=2572-7621&rft.spage=792&rft.epage=797&rft_id=info:doi/10.1109%2FR10-HTC.2017.8289075&rft.externalDocID=8289075