Efficient approaches for accuracy improvement of breast cancer classification using wisconsin database
Breast cancer is the second leading cause of death for women all over the world. But early detection and prevention can significantly reduce the chances of death. This paper deals with different statistical and deep learning analysis of Wisconsin Breast Cancer Database for improving the accuracy in...
Saved in:
Published in | 2017 IEEE Region 10 Humanitarian Technology Conference (R10-HTC) pp. 792 - 797 |
---|---|
Main Authors | , , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.12.2017
|
Subjects | |
Online Access | Get full text |
ISSN | 2572-7621 |
DOI | 10.1109/R10-HTC.2017.8289075 |
Cover
Abstract | Breast cancer is the second leading cause of death for women all over the world. But early detection and prevention can significantly reduce the chances of death. This paper deals with different statistical and deep learning analysis of Wisconsin Breast Cancer Database for improving the accuracy in detection and classification of breast cancer based on different attributes. Applying Naïve Bayes, SVM, Logistic Regression, KNN, Random Forest, MLP and CNN classifiers, higher accuracy is obtained which is up to 98% to 99%. |
---|---|
AbstractList | Breast cancer is the second leading cause of death for women all over the world. But early detection and prevention can significantly reduce the chances of death. This paper deals with different statistical and deep learning analysis of Wisconsin Breast Cancer Database for improving the accuracy in detection and classification of breast cancer based on different attributes. Applying Naïve Bayes, SVM, Logistic Regression, KNN, Random Forest, MLP and CNN classifiers, higher accuracy is obtained which is up to 98% to 99%. |
Author | Hossain, Jubaer Khan, Asir Intisar Fattah, Shaikh Anowarul Ghosh, Shajib Shahnaz, Celia |
Author_xml | – sequence: 1 givenname: Celia surname: Shahnaz fullname: Shahnaz, Celia organization: Department of Electrical and Electronic Engineering, Bangladesh University of Engineering and Technology, Dhaka, Bangladesh – sequence: 2 givenname: Jubaer surname: Hossain fullname: Hossain, Jubaer organization: Department of Electrical and Electronic Engineering, Bangladesh University of Engineering and Technology, Dhaka, Bangladesh – sequence: 3 givenname: Shaikh Anowarul surname: Fattah fullname: Fattah, Shaikh Anowarul organization: Department of Electrical and Electronic Engineering, Bangladesh University of Engineering and Technology, Dhaka, Bangladesh – sequence: 4 givenname: Shajib surname: Ghosh fullname: Ghosh, Shajib organization: Department of Electrical and Electronic Engineering, Bangladesh University of Engineering and Technology, Dhaka, Bangladesh – sequence: 5 givenname: Asir Intisar surname: Khan fullname: Khan, Asir Intisar organization: Department of Electrical and Electronic Engineering, Bangladesh University of Engineering and Technology, Dhaka, Bangladesh |
BookMark | eNotUNtKAzEUjKJgrf0CfcgPbM1Jmk32UUpthYIg9bmcTU400mZLslX6967Yp7kwDMPcsqvUJWLsAcQUQDSPbyCq1WY-lQLM1ErbCKMv2KQxFrSytQSj5SUbSW1kZQZ5wyalfAkhFDRC1GrEwiKE6CKlnuPhkDt0n1R46DJH544Z3YnH_eB_0_4v0wXeZsLSc4fJUeZuh6XEoQL72CV-LDF98J9YXJcGyj322GKhO3YdcFdocsYxe39ebOarav26fJk_ras4TO0r34qZDN62TU0Ivg16hr7WVsmAMFiNmSlJ3tTeAimkFrQLQnoFaLTRoMbs_r83EtH2kOMe82l7fkb9AnV7XD8 |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/R10-HTC.2017.8289075 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Social Welfare & Social Work Engineering |
EISBN | 9781538621752 1538621754 |
EISSN | 2572-7621 |
EndPage | 797 |
ExternalDocumentID | 8289075 |
Genre | orig-research |
GroupedDBID | 6IE 6IF 6IL 6IN AAJGR AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK OCL RIE RIL |
ID | FETCH-LOGICAL-i175t-db042fd8b96ea1dbf54ad65832fa16ea97432ed76d81e3aeb15cf02d31a757513 |
IEDL.DBID | RIE |
IngestDate | Wed Aug 27 02:51:31 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i175t-db042fd8b96ea1dbf54ad65832fa16ea97432ed76d81e3aeb15cf02d31a757513 |
PageCount | 6 |
ParticipantIDs | ieee_primary_8289075 |
PublicationCentury | 2000 |
PublicationDate | 2017-Dec. |
PublicationDateYYYYMMDD | 2017-12-01 |
PublicationDate_xml | – month: 12 year: 2017 text: 2017-Dec. |
PublicationDecade | 2010 |
PublicationTitle | 2017 IEEE Region 10 Humanitarian Technology Conference (R10-HTC) |
PublicationTitleAbbrev | R10-HTC |
PublicationYear | 2017 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0003190063 ssj0001968470 |
Score | 1.7677071 |
Snippet | Breast cancer is the second leading cause of death for women all over the world. But early detection and prevention can significantly reduce the chances of... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 792 |
SubjectTerms | Algorithm design and analysis algorithms attributes Breast cancer Classification algorithms Convolutional neural networks deep learning diagnosis neural network Support vector machines |
Title | Efficient approaches for accuracy improvement of breast cancer classification using wisconsin database |
URI | https://ieeexplore.ieee.org/document/8289075 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF5qT3pR24qPKnsQTybdvDbNubQUQRFpsbeyr0ippJImiP56ZzZpq-LBWzKQZdmdzDcz-80sIdcqUNIPpXF8ISFA8XnkJH2ZOjIMEI94LJVl-T7w8TS8m0WzBrnd1sIYYyz5zLj4aM_y9UqVmCrrYXQAELdH9kDNqlqtXT4l4WBo2fYdVAvht66W81jSewKLM54MkM4Vu_VQP-5UsZAyOiT3m8lUTJKlWxbSVZ-_-jT-d7ZHpLMr3qOPW1g6Jg2TtcjBt76DLdKtinLps3lNRW7oDd0IVvmyTdKh7SsBo9NNy3GzpuDdUqFUmQv1QRc2F2FTi3SVUonU9oIqVKGcKvTIkYJkd50itf6Fvi_WCsm4GUVSKoJnh0xHw8lg7NT3MTgLcDIKR0v4w1Pdlwk3wtMyjUKhwYMJ_FR4IILQJPCNjrnueyYQgAKRSpmvA0_EeLwTnJBmtsrMKaFcg41lOlCKi5BJJhjT2gaExsDH8Rlp44LO36qWG_N6Lc__Fl-QfdzUimXSJc0iL80l-AqFvLJK8gW6d79V |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8JAEJ4gHtSLChgfqHswniz2XTgTCCoQYyByI_uqIRhqSonRX-_MlocaD97aSbrZ7E7nm5n9ZhbgSnpSuL7QlssFBihuGFiNuogt4XuER2EkpGH59sPO0L8fBaMC3KxrYbTWhnyma_RozvJVIheUKrul6AAhbgu2Eff9IK_W2mRUGiGaWnv9jspFALysl3Psxu0T2pzOoEmErqi2HOzHrSoGVNr70FtNJ-eSTGuLTNTk569Ojf-d7wFUNuV77HENTIdQ0LMS7H3rPFiCal6Wy571a8xTza7ZSpCk0zLELdNZAkdnq6bjes7Qv2VcykXK5QebmGyESS6yJGaCyO0Zk6REKZPkkxMJyew7I3L9C3ufzCXRcWeMaKkEnxUYtluDZsda3shgTdDNyCwl8B-PVV00Qs0dJeLA5wp9GM-NuYMiDE48V6soVHVHexxxIJCx7SrP4REd8HhHUJwlM30MLFRoZW3lSRly3xY2t22lTEioNX4cnUCZFnT8ljfdGC_X8vRv8SXsdAa97rh71384g13a4JxzUoVili70OXoOmbgwCvMF6P_Cog |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2017+IEEE+Region+10+Humanitarian+Technology+Conference+%28R10-HTC%29&rft.atitle=Efficient+approaches+for+accuracy+improvement+of+breast+cancer+classification+using+wisconsin+database&rft.au=Shahnaz%2C+Celia&rft.au=Hossain%2C+Jubaer&rft.au=Fattah%2C+Shaikh+Anowarul&rft.au=Ghosh%2C+Shajib&rft.date=2017-12-01&rft.pub=IEEE&rft.eissn=2572-7621&rft.spage=792&rft.epage=797&rft_id=info:doi/10.1109%2FR10-HTC.2017.8289075&rft.externalDocID=8289075 |