The fault diagnosis of power transformer using clustering and Radial Basis Function neural network

In paper, a fault diagnosis method of power transformer based on the radial basis function (RBF) neural network and clustering is discussed. It uses the clustering algorithm to decide centers of the radial basis function, and then uses least mean square (LMS) to calculate the output weights between...

Full description

Saved in:
Bibliographic Details
Published in2009 International Conference on Machine Learning and Cybernetics Vol. 3; pp. 1257 - 1260
Main Author Li Chao
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.07.2009
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In paper, a fault diagnosis method of power transformer based on the radial basis function (RBF) neural network and clustering is discussed. It uses the clustering algorithm to decide centers of the radial basis function, and then uses least mean square (LMS) to calculate the output weights between the hidden layer and output layer. After decided the architecture of the artificial neural network, uses the history data of power transformer to test the proposed diagnosis system. From the testing result, it can be concluded that the proposed method is efficient in transformer fault diagnosis.
AbstractList In paper, a fault diagnosis method of power transformer based on the radial basis function (RBF) neural network and clustering is discussed. It uses the clustering algorithm to decide centers of the radial basis function, and then uses least mean square (LMS) to calculate the output weights between the hidden layer and output layer. After decided the architecture of the artificial neural network, uses the history data of power transformer to test the proposed diagnosis system. From the testing result, it can be concluded that the proposed method is efficient in transformer fault diagnosis.
Author Li Chao
Author_xml – sequence: 1
  surname: Li Chao
  fullname: Li Chao
  organization: Sch. of Electr. Power & Autom. Eng., Shanghai Univ. of Electr. Power, Shanghai, China
BookMark eNo1kN1KAzEQhSO2YFv7AnqTF9iayU83udTFamFFkArelWx-6uo2W5Jdim_vFutwYM4Z-ObiTNEotMEhdANkAUDU3bp4KYsFJUQtBAVKZX6BpsAp5ywnjF6iucrlf6ZshCYUliQDxj7GaDpwUgEoQa_QPKUvMgwXNF-yCao2nw573TcdtrXehTbVCbceH9qji7iLOiTfxv3g-1SHHTZNnzoXT1YHi9_0QDX4QZ-wVR9MV7cBB9fH4Rpcd2zj9zUae90kNz_vGXpfPW6K56x8fVoX92VWQy66zGpDpNfegpbGSEGYJMCBidwxr2EQtSCs0tpVsDS-MsYQoziHilgPwGbo9u9v7ZzbHmK91_Fne-6L_QJ_jl57
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICMLC.2009.5212287
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 1424437032
9781424437030
EndPage 1260
ExternalDocumentID 5212287
Genre orig-research
GroupedDBID 6IE
6IF
6IH
6IK
6IL
6IM
6IN
AAJGR
AAWTH
ACGFS
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IPLJI
M43
OCL
RIE
RIL
ID FETCH-LOGICAL-i175t-dac08fafd1a8cc850380141357e3fa1fa12d15d9aaeb16cfbccc0c9441b0df113
IEDL.DBID RIE
ISBN 9781424437023
1424437024
ISSN 2160-133X
IngestDate Wed Aug 27 02:20:46 EDT 2025
IsPeerReviewed false
IsScholarly false
LCCN 2008911952
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-dac08fafd1a8cc850380141357e3fa1fa12d15d9aaeb16cfbccc0c9441b0df113
PageCount 4
ParticipantIDs ieee_primary_5212287
PublicationCentury 2000
PublicationDate 2009-July
PublicationDateYYYYMMDD 2009-07-01
PublicationDate_xml – month: 07
  year: 2009
  text: 2009-July
PublicationDecade 2000
PublicationTitle 2009 International Conference on Machine Learning and Cybernetics
PublicationTitleAbbrev ICMLC
PublicationYear 2009
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0000452763
ssj0000744891
Score 1.4279007
Snippet In paper, a fault diagnosis method of power transformer based on the radial basis function (RBF) neural network and clustering is discussed. It uses the...
SourceID ieee
SourceType Publisher
StartPage 1257
SubjectTerms Artificial neural networks
Clustering algorithm
Clustering algorithms
Dissolved gas analysis
Fault diagnosis
Least mean square
Machine learning
Machine learning algorithms
Neural networks
Oil insulation
Power transformer
Power transformers
Radial basis function networks
RBF neural network
Title The fault diagnosis of power transformer using clustering and Radial Basis Function neural network
URI https://ieeexplore.ieee.org/document/5212287
Volume 3
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEB7anjxVbcU3e_Bo2mw3z6vFUsWKiIXeyj6lWNKiycVf70weFcWDIYfdhWSTZZOZ2f2-bwCugiQIXeSEZ4ORodUq5-E_T3upInOUqijkxEaePUbTeXC_CBctuN5xYay1JfjMDqhY7uWbjS5oqWxIPFP08NvQxsCt4mrt1lNIGjyupaTKeoyBR5kwb8Qj38NQbNHwukSMhqmRe6rroiHU-Onwbjx7GFdSlnWPP1KvlJZn0oVZ88wV4ORtUORqoD9_yTn-96X2of_N8WNPO-t1AC2bHUK3SfLA6m--BwonEnOyWOfMVLC81QfbOLal9Gosb_xeLBOE_pXpdUHaC1SUmWHPpH2wZjeSLpugEaWJwEhFE1uzCoPeh_nk9mU89erEDN4KvY3cM1L7iZPOcJlonZCiDOFFRRhb4STHc2R4aFIp0RJE2imtta9T9LyUbxzn4gg62Sazx8ACFTrLlRiZOAnwSEpNeCW4SaTGm59Aj4Zsua20N5b1aJ3-3XwGe9VuD8Fpz6GTvxf2Ap2GXF2Ws-ULhYe7JQ
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LTsJAFJ0gLnSFCsa3s3BpocP0uZVIQCkxBhJ2ZJ7GSArRduPXe28fGI0Lmy5mJukz0547M-ecS8iNF3m-DSx3jNfXOFtlHfjnKSeWCEexDHyGauRkGozm3sPCXzTI7VYLY4wpyGemi8ViLV-vVY5TZT3UmUKEv0N2Afd9Vqq1tjMqaA4eVmZSRT2EoUeRMq_PAteBwdiiVnbxEKCpNnyq6ryW1LhxbzxIJoPSzLK65o_kKwX2DFskqe-6pJy8dfNMdtXnL0PH_z7WAel8q_zo0xa_DknDpEekVad5oNVX3yYSuhK1Il9lVJfEvNcPurZ0gwnWaFZHvlBGEv0LVasc3RewKFJNn9H9YEXvBB42BBjFrkDRRxNa05KF3iHz4f1sMHKq1AzOK8QbmaOFciMrrGYiUipCTxlkjHI_NNwKBntfM1_HQgAWBMpKpZSrYoi9pKstY_yYNNN1ak4I9aRvDZO8r8PIgy0qXOElZzoSCk5-Str4ypab0n1jWb2ts7-br8neaJZMlpPx9PGc7JdrP0iuvSDN7D03lxBCZPKq6DlfexG-bg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2009+International+Conference+on+Machine+Learning+and+Cybernetics&rft.atitle=The+fault+diagnosis+of+power+transformer+using+clustering+and+Radial+Basis+Function+neural+network&rft.au=Li+Chao&rft.date=2009-07-01&rft.pub=IEEE&rft.isbn=9781424437023&rft.issn=2160-133X&rft.volume=3&rft.spage=1257&rft.epage=1260&rft_id=info:doi/10.1109%2FICMLC.2009.5212287&rft.externalDocID=5212287
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2160-133X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2160-133X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2160-133X&client=summon