Pyramid Scene Parsing Network
Scene parsing is challenging for unrestricted open vocabulary and diverse scenes. In this paper, we exploit the capability of global context information by different-region-based context aggregation through our pyramid pooling module together with the proposed pyramid scene parsing network (PSPNet)....
Saved in:
Published in | 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) pp. 6230 - 6239 |
---|---|
Main Authors | , , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.07.2017
|
Subjects | |
Online Access | Get full text |
ISSN | 1063-6919 1063-6919 |
DOI | 10.1109/CVPR.2017.660 |
Cover
Loading…
Abstract | Scene parsing is challenging for unrestricted open vocabulary and diverse scenes. In this paper, we exploit the capability of global context information by different-region-based context aggregation through our pyramid pooling module together with the proposed pyramid scene parsing network (PSPNet). Our global prior representation is effective to produce good quality results on the scene parsing task, while PSPNet provides a superior framework for pixel-level prediction. The proposed approach achieves state-of-the-art performance on various datasets. It came first in ImageNet scene parsing challenge 2016, PASCAL VOC 2012 benchmark and Cityscapes benchmark. A single PSPNet yields the new record of mIoU accuracy 85.4% on PASCAL VOC 2012 and accuracy 80.2% on Cityscapes. |
---|---|
AbstractList | Scene parsing is challenging for unrestricted open vocabulary and diverse scenes. In this paper, we exploit the capability of global context information by different-region-based context aggregation through our pyramid pooling module together with the proposed pyramid scene parsing network (PSPNet). Our global prior representation is effective to produce good quality results on the scene parsing task, while PSPNet provides a superior framework for pixel-level prediction. The proposed approach achieves state-of-the-art performance on various datasets. It came first in ImageNet scene parsing challenge 2016, PASCAL VOC 2012 benchmark and Cityscapes benchmark. A single PSPNet yields the new record of mIoU accuracy 85.4% on PASCAL VOC 2012 and accuracy 80.2% on Cityscapes. |
Author | Hengshuang Zhao Xiaojuan Qi Jiaya Jia Jianping Shi Xiaogang Wang |
Author_xml | – sequence: 1 surname: Hengshuang Zhao fullname: Hengshuang Zhao email: hszhao@cse.cuhk.edu.hk – sequence: 2 surname: Jianping Shi fullname: Jianping Shi email: shijianping@sensetime.com – sequence: 3 surname: Xiaojuan Qi fullname: Xiaojuan Qi email: xjqi@cse.cuhk.edu.hk – sequence: 4 surname: Xiaogang Wang fullname: Xiaogang Wang email: xgwang@ee.cuhk.edu.hk – sequence: 5 surname: Jiaya Jia fullname: Jiaya Jia email: leojia@cse.cuhk.edu.hk |
BookMark | eNpNTk1Lw0AUfEoFm-rRkwj5A4nv7fceJVgtFA1-Xcu6eZGoTWVTkP57I3ooAzMDMwyTwaTf9AxwRlgSob-sXuqHUiDZ0hg8gIy0dAaVtuoQpoRGFsaTn-z5Y8iG4R1RSCtwChf1LoV11-SPkXvO65CGrn_L73j7vUkfJ3DUhs-BT_91Bs_z66fqtlje3yyqq2XRkdXbojEjVHTWea1UYDbOopdsBSO1ZF-ltyONCUWjqWmobX8bwsVg4vh5Bud_ux0zr75Stw5pt3KESErKH8FCPgw |
CODEN | IEEPAD |
ContentType | Conference Proceeding |
DBID | 6IE 6IH CBEJK RIE RIO |
DOI | 10.1109/CVPR.2017.660 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Computer Science |
EISBN | 1538604574 9781538604571 |
EISSN | 1063-6919 |
EndPage | 6239 |
ExternalDocumentID | 8100143 |
Genre | orig-research |
GroupedDBID | 23M 29F 29O 6IE 6IH 6IK ABDPE ACGFS ALMA_UNASSIGNED_HOLDINGS CBEJK IPLJI M43 RIE RIO RNS |
ID | FETCH-LOGICAL-i175t-d6d6d4c8789544aee687093e72e01f17b3977b34ae1c651dd1ff870928ca6c153 |
IEDL.DBID | RIE |
ISSN | 1063-6919 |
IngestDate | Wed Aug 27 02:33:41 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i175t-d6d6d4c8789544aee687093e72e01f17b3977b34ae1c651dd1ff870928ca6c153 |
PageCount | 10 |
ParticipantIDs | ieee_primary_8100143 |
PublicationCentury | 2000 |
PublicationDate | 2017-July |
PublicationDateYYYYMMDD | 2017-07-01 |
PublicationDate_xml | – month: 07 year: 2017 text: 2017-July |
PublicationDecade | 2010 |
PublicationTitle | 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) |
PublicationTitleAbbrev | CVPR |
PublicationYear | 2017 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0023720 ssj0003211698 |
Score | 2.6229455 |
Snippet | Scene parsing is challenging for unrestricted open vocabulary and diverse scenes. In this paper, we exploit the capability of global context information by... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 6230 |
SubjectTerms | Automobiles Convolution Feature extraction Image segmentation Neural networks Semantics |
Title | Pyramid Scene Parsing Network |
URI | https://ieeexplore.ieee.org/document/8100143 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8JAEJ6AJ0-oYHxhevBoC9vu80wkxATSGDHcyL6aECMYLAf99e5uSzHGg-mlme5h2-3uvL75BuBODYkUJtWx-1dwjJkRsULO57FWEy44qVMx0xmdzPHjgixacN_UwlhrA_jMJv425PLNRu98qGzAPWEQztrQdo5bVavVxFMy58lQ0WQQUt99JWQ6aRZTgcSBX3MwesmfPKiLJYGZ8kdXlaBUxh2Y7qdTYUlek12pEv31i6nxv_M9gd6hfC_KG8V0Ci27PoNObW9G9W7-cKJ9S4e9rAv9_HMr31Z-lDsEo1yGWEI0q8DiPZiPH55Hk7juoBCvnFlQxoa6C2vOuCAYS2up254isyy1Q1Qgprz5pzL3BGlKkDGoKPyIlGtJtTsMz-FovVnbC4iI0ojJVApnwWFVcOfmKSZNanXGxLDQl9D1H2D5XpFkLOt3v_pbfA3HfgEq3OsNHJXbne077V6q27Cs30dbny0 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT8IwFH9BPOgJFYxf6A4e3aBbP89EggpkMWC4kbbrEmIEg-Ogf73tNoYxHswuy1sP3br2ff3e7wHcqi6RIgm1b_8V7GOWCF8h6_MYowkXnJSpmNGYDqb4cUZmNbiramGMMTn4zATuNs_lJyu9caGyDneEQTjag33iinGLaq0qohJZX4aKKocQuv4rea6TRj4VSOwYNju9l_jZwbpYkHNT_uirkquVfgNG2wkVaJLXYJOpQH_94mr874yPoLUr4PPiSjUdQ80sT6BRWpxeuZ8_rGjb1GEra0I7_lzLt4UbZY9BL5Z5NMEbF3DxFkz795PewC97KPgLaxhkfkLthTVnXBCMpTHUblARGRaaLkoRU84AVJF9gjQlKElQmroRIdeSanscnkJ9uVqaM_CI0ojJUAprw2GVcuvoKSaT0OiIiW6qz6HpPsD8vaDJmJfvfvG3-AYOBpPRcD58GD9dwqFbjAIFewX1bL0xbavrM3WdL_E3ysqidQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=2017+IEEE+Conference+on+Computer+Vision+and+Pattern+Recognition+%28CVPR%29&rft.atitle=Pyramid+Scene+Parsing+Network&rft.au=Hengshuang+Zhao&rft.au=Jianping+Shi&rft.au=Xiaojuan+Qi&rft.au=Xiaogang+Wang&rft.date=2017-07-01&rft.pub=IEEE&rft.issn=1063-6919&rft.eissn=1063-6919&rft.spage=6230&rft.epage=6239&rft_id=info:doi/10.1109%2FCVPR.2017.660&rft.externalDocID=8100143 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6919&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6919&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6919&client=summon |