Asymmetric region-to-image matching for comparing images with generic object categories

We present a feature matching algorithm that leverages bottom-up segmentation. Unlike conventional image-to-image or region-to-region matching algorithms, our method finds corresponding points in an "asymmetric" manner, matching features within each region of a segmented image to a second...

Full description

Saved in:
Bibliographic Details
Published in2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition pp. 2344 - 2351
Main Authors Jaechul Kim, Grauman, K
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.06.2010
Subjects
Online AccessGet full text
ISBN1424469848
9781424469840
ISSN1063-6919
1063-6919
DOI10.1109/CVPR.2010.5539923

Cover

Loading…
Abstract We present a feature matching algorithm that leverages bottom-up segmentation. Unlike conventional image-to-image or region-to-region matching algorithms, our method finds corresponding points in an "asymmetric" manner, matching features within each region of a segmented image to a second unsegmented image. We develop a dynamic programming solution to efficiently identify corresponding points for each region, so as to maximize both geometric consistency and appearance similarity. The final matching score between two images is determined by the union of corresponding points obtained from each region-to-image match. Our encoding for the geometric constraints makes the algorithm flexible when matching objects exhibiting non-rigid deformations or intra-class appearance variation. We demonstrate our image matching approach applied to object category recognition, and show on the Caltech-256 and 101 datasets that it outperforms existing image matching measures by 10~20% in nearest-neighbor recognition tests.
AbstractList We present a feature matching algorithm that leverages bottom-up segmentation. Unlike conventional image-to-image or region-to-region matching algorithms, our method finds corresponding points in an "asymmetric" manner, matching features within each region of a segmented image to a second unsegmented image. We develop a dynamic programming solution to efficiently identify corresponding points for each region, so as to maximize both geometric consistency and appearance similarity. The final matching score between two images is determined by the union of corresponding points obtained from each region-to-image match. Our encoding for the geometric constraints makes the algorithm flexible when matching objects exhibiting non-rigid deformations or intra-class appearance variation. We demonstrate our image matching approach applied to object category recognition, and show on the Caltech-256 and 101 datasets that it outperforms existing image matching measures by 10~20% in nearest-neighbor recognition tests.
Author Grauman, K
Jaechul Kim
Author_xml – sequence: 1
  surname: Jaechul Kim
  fullname: Jaechul Kim
  email: jaechul@cs.utexas.edu
  organization: Univ. of Texas at Austin, Austin, TX, USA
– sequence: 2
  givenname: K
  surname: Grauman
  fullname: Grauman, K
  email: grauman@cs.utexas.edu
  organization: Univ. of Texas at Austin, Austin, TX, USA
BookMark eNpNkF9LwzAUxaNOcJ1-APElX6AzyW3S5nEU_8FAEf-9jTS97TJsM9KA7Nvb6UCfDoffuZd7T0Imve-RkEvO5pwzfV2-PT3PBRutlKC1gCOS8ExkmdIFfByTKWcKUqW5PvkDWTH5B85IMgwbxgTkgk3J-2LYdR3G4CwN2Drfp9GnrjMt0s5Eu3Z9SxsfqPXd1oS9-4ED_XJxTVvscT_qqw3aSK2J2PrgcDgnp435HPDioDPyenvzUt6ny8e7h3KxTB3PZUxrqcdHTA5VoaCwwIzKpJTKZhYqKRRvtChqEIIXgCBrMGNK1VjVTaW1rGBGrn73OkRcbcN4XNitDu3AN6oTV1c
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/CVPR.2010.5539923
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Computer Science
EISBN 142446983X
9781424469833
9781424469857
1424469856
EISSN 1063-6919
EndPage 2351
ExternalDocumentID 5539923
Genre orig-research
GroupedDBID 23M
29F
29O
6IE
6IH
6IK
ABDPE
ACGFS
ALMA_UNASSIGNED_HOLDINGS
CBEJK
IPLJI
M43
RIE
RIO
RNS
ID FETCH-LOGICAL-i175t-d59539a73b8638c30a645556c4c3b5261f928d322183e35d3a38c6debdfb995b3
IEDL.DBID RIE
ISBN 1424469848
9781424469840
ISSN 1063-6919
IngestDate Wed Aug 27 02:49:52 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-d59539a73b8638c30a645556c4c3b5261f928d322183e35d3a38c6debdfb995b3
PageCount 8
ParticipantIDs ieee_primary_5539923
PublicationCentury 2000
PublicationDate 2010-June
PublicationDateYYYYMMDD 2010-06-01
PublicationDate_xml – month: 06
  year: 2010
  text: 2010-June
PublicationDecade 2010
PublicationTitle 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition
PublicationTitleAbbrev CVPR
PublicationYear 2010
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0023720
ssj0000451957
ssj0003211698
Score 1.9606749
Snippet We present a feature matching algorithm that leverages bottom-up segmentation. Unlike conventional image-to-image or region-to-region matching algorithms, our...
SourceID ieee
SourceType Publisher
StartPage 2344
SubjectTerms Computer vision
Distortion measurement
Dynamic programming
Encoding
Image matching
Image recognition
Image retrieval
Image segmentation
Object recognition
Testing
Title Asymmetric region-to-image matching for comparing images with generic object categories
URI https://ieeexplore.ieee.org/document/5539923
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED61nZgKtIi3PDDivhw78YgqqgoJVCEK3ar4kapCTRBNB_j1nJ0HAjGw5RxHsS37fI_v7gCujDRskOABVHGS0EAxQaWOA8q0FEM70njLeLTFg5jOg7sFXzTguo6FsdZ68JntuUfvyzeZ3jlTWZ_7NKqsCU1U3IpYrdqeUuRJCWuaoWYjZO1RGLlqLN7zKRgVciirIC_sE0RV7qeSrtyfw4Hsj59njwUCrPz7jzIs_haatOG-Gn8BPnnt7XLV05-_Ujv-d4L70P2O9yOz-iY7gIZND6FdCqikPP5bbKpqQFRtHXi52X5sNq4slyauyEOW0jyj6w2yKYLCsEdqEhSMSQF2d5R_uSXOAkxWLus1fpopZw8iDp61ypz23oX55PZpPKVlsQa6Rgkkp4ZLHHwcMhXhkdZsEIuAcy50oJniqKclchQZZB_IQyzjhsXYSxirTKKk5IodQSvNUnsMJMSNEnKvrmnUp3AXhTxhyFtkHCWGByfQcUu3fCvycSzLVTv9u_kM9gqPv7OcnEMrf9_ZCxQkcnXpd9AX-Hy-3g
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT8IwFG8QD3pCBeO3PXi0CHTt1qMhElQgxIByI-vHCDFsRsZB_3pfuw-j8eBt7bps7dr3-XvvIXSlhaatCA6gDKOIeJJyIlToEaoEb5uOAi7j0BYj3p96DzM2q6DrMhbGGOPAZ6ZpL50vXydqY01lN8ylUaVbaBv4Pmtn0VqlRSXLlOKXbQq6DRelT6Fj67E43yenhIu2KMK8YIwXFNmf8nbhAG23xE33efyUYcDy9_8oxOL4UK-GhsUMMvjJa3OTyqb6_JXc8b9T3EON74g_PC552T6qmPgA1XIRFecEYA1dRRWIoq-OXm7XH6uVLcylsC3zkMQkTchyBYQKgzjssJoYRGOcwd1ty91cY2sDxgub9xoeTaS1CGEL0FokVn9voGnvbtLtk7xcA1mCDJISzQR8fOhTGcChVrQVcvhLjCtPUclAU4tEJ9BAQICKGMo0DWEU10bqSArBJD1E1TiJzRHCPmwVnzmFTYFGBfvIZxEF6iLCINLMO0Z1u3TztywjxzxftZO_uy_RTn8yHMwH96PHU7Sb-f-tHeUMVdP3jTkHsSKVF243fQEj88In
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2010+IEEE+Computer+Society+Conference+on+Computer+Vision+and+Pattern+Recognition&rft.atitle=Asymmetric+region-to-image+matching+for+comparing+images+with+generic+object+categories&rft.au=Jaechul+Kim&rft.au=Grauman%2C+K&rft.date=2010-06-01&rft.pub=IEEE&rft.isbn=9781424469840&rft.issn=1063-6919&rft.eissn=1063-6919&rft.spage=2344&rft.epage=2351&rft_id=info:doi/10.1109%2FCVPR.2010.5539923&rft.externalDocID=5539923
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6919&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6919&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6919&client=summon