Asymmetric region-to-image matching for comparing images with generic object categories
We present a feature matching algorithm that leverages bottom-up segmentation. Unlike conventional image-to-image or region-to-region matching algorithms, our method finds corresponding points in an "asymmetric" manner, matching features within each region of a segmented image to a second...
Saved in:
Published in | 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition pp. 2344 - 2351 |
---|---|
Main Authors | , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.06.2010
|
Subjects | |
Online Access | Get full text |
ISBN | 1424469848 9781424469840 |
ISSN | 1063-6919 1063-6919 |
DOI | 10.1109/CVPR.2010.5539923 |
Cover
Loading…
Abstract | We present a feature matching algorithm that leverages bottom-up segmentation. Unlike conventional image-to-image or region-to-region matching algorithms, our method finds corresponding points in an "asymmetric" manner, matching features within each region of a segmented image to a second unsegmented image. We develop a dynamic programming solution to efficiently identify corresponding points for each region, so as to maximize both geometric consistency and appearance similarity. The final matching score between two images is determined by the union of corresponding points obtained from each region-to-image match. Our encoding for the geometric constraints makes the algorithm flexible when matching objects exhibiting non-rigid deformations or intra-class appearance variation. We demonstrate our image matching approach applied to object category recognition, and show on the Caltech-256 and 101 datasets that it outperforms existing image matching measures by 10~20% in nearest-neighbor recognition tests. |
---|---|
AbstractList | We present a feature matching algorithm that leverages bottom-up segmentation. Unlike conventional image-to-image or region-to-region matching algorithms, our method finds corresponding points in an "asymmetric" manner, matching features within each region of a segmented image to a second unsegmented image. We develop a dynamic programming solution to efficiently identify corresponding points for each region, so as to maximize both geometric consistency and appearance similarity. The final matching score between two images is determined by the union of corresponding points obtained from each region-to-image match. Our encoding for the geometric constraints makes the algorithm flexible when matching objects exhibiting non-rigid deformations or intra-class appearance variation. We demonstrate our image matching approach applied to object category recognition, and show on the Caltech-256 and 101 datasets that it outperforms existing image matching measures by 10~20% in nearest-neighbor recognition tests. |
Author | Grauman, K Jaechul Kim |
Author_xml | – sequence: 1 surname: Jaechul Kim fullname: Jaechul Kim email: jaechul@cs.utexas.edu organization: Univ. of Texas at Austin, Austin, TX, USA – sequence: 2 givenname: K surname: Grauman fullname: Grauman, K email: grauman@cs.utexas.edu organization: Univ. of Texas at Austin, Austin, TX, USA |
BookMark | eNpNkF9LwzAUxaNOcJ1-APElX6AzyW3S5nEU_8FAEf-9jTS97TJsM9KA7Nvb6UCfDoffuZd7T0Imve-RkEvO5pwzfV2-PT3PBRutlKC1gCOS8ExkmdIFfByTKWcKUqW5PvkDWTH5B85IMgwbxgTkgk3J-2LYdR3G4CwN2Drfp9GnrjMt0s5Eu3Z9SxsfqPXd1oS9-4ED_XJxTVvscT_qqw3aSK2J2PrgcDgnp435HPDioDPyenvzUt6ny8e7h3KxTB3PZUxrqcdHTA5VoaCwwIzKpJTKZhYqKRRvtChqEIIXgCBrMGNK1VjVTaW1rGBGrn73OkRcbcN4XNitDu3AN6oTV1c |
ContentType | Conference Proceeding |
DBID | 6IE 6IH CBEJK RIE RIO |
DOI | 10.1109/CVPR.2010.5539923 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Computer Science |
EISBN | 142446983X 9781424469833 9781424469857 1424469856 |
EISSN | 1063-6919 |
EndPage | 2351 |
ExternalDocumentID | 5539923 |
Genre | orig-research |
GroupedDBID | 23M 29F 29O 6IE 6IH 6IK ABDPE ACGFS ALMA_UNASSIGNED_HOLDINGS CBEJK IPLJI M43 RIE RIO RNS |
ID | FETCH-LOGICAL-i175t-d59539a73b8638c30a645556c4c3b5261f928d322183e35d3a38c6debdfb995b3 |
IEDL.DBID | RIE |
ISBN | 1424469848 9781424469840 |
ISSN | 1063-6919 |
IngestDate | Wed Aug 27 02:49:52 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i175t-d59539a73b8638c30a645556c4c3b5261f928d322183e35d3a38c6debdfb995b3 |
PageCount | 8 |
ParticipantIDs | ieee_primary_5539923 |
PublicationCentury | 2000 |
PublicationDate | 2010-June |
PublicationDateYYYYMMDD | 2010-06-01 |
PublicationDate_xml | – month: 06 year: 2010 text: 2010-June |
PublicationDecade | 2010 |
PublicationTitle | 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition |
PublicationTitleAbbrev | CVPR |
PublicationYear | 2010 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0023720 ssj0000451957 ssj0003211698 |
Score | 1.9606749 |
Snippet | We present a feature matching algorithm that leverages bottom-up segmentation. Unlike conventional image-to-image or region-to-region matching algorithms, our... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 2344 |
SubjectTerms | Computer vision Distortion measurement Dynamic programming Encoding Image matching Image recognition Image retrieval Image segmentation Object recognition Testing |
Title | Asymmetric region-to-image matching for comparing images with generic object categories |
URI | https://ieeexplore.ieee.org/document/5539923 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED61nZgKtIi3PDDivhw78YgqqgoJVCEK3ar4kapCTRBNB_j1nJ0HAjGw5RxHsS37fI_v7gCujDRskOABVHGS0EAxQaWOA8q0FEM70njLeLTFg5jOg7sFXzTguo6FsdZ68JntuUfvyzeZ3jlTWZ_7NKqsCU1U3IpYrdqeUuRJCWuaoWYjZO1RGLlqLN7zKRgVciirIC_sE0RV7qeSrtyfw4Hsj59njwUCrPz7jzIs_haatOG-Gn8BPnnt7XLV05-_Ujv-d4L70P2O9yOz-iY7gIZND6FdCqikPP5bbKpqQFRtHXi52X5sNq4slyauyEOW0jyj6w2yKYLCsEdqEhSMSQF2d5R_uSXOAkxWLus1fpopZw8iDp61ypz23oX55PZpPKVlsQa6Rgkkp4ZLHHwcMhXhkdZsEIuAcy50oJniqKclchQZZB_IQyzjhsXYSxirTKKk5IodQSvNUnsMJMSNEnKvrmnUp3AXhTxhyFtkHCWGByfQcUu3fCvycSzLVTv9u_kM9gqPv7OcnEMrf9_ZCxQkcnXpd9AX-Hy-3g |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT8IwFG8QD3pCBeO3PXi0CHTt1qMhElQgxIByI-vHCDFsRsZB_3pfuw-j8eBt7bps7dr3-XvvIXSlhaatCA6gDKOIeJJyIlToEaoEb5uOAi7j0BYj3p96DzM2q6DrMhbGGOPAZ6ZpL50vXydqY01lN8ylUaVbaBv4Pmtn0VqlRSXLlOKXbQq6DRelT6Fj67E43yenhIu2KMK8YIwXFNmf8nbhAG23xE33efyUYcDy9_8oxOL4UK-GhsUMMvjJa3OTyqb6_JXc8b9T3EON74g_PC552T6qmPgA1XIRFecEYA1dRRWIoq-OXm7XH6uVLcylsC3zkMQkTchyBYQKgzjssJoYRGOcwd1ty91cY2sDxgub9xoeTaS1CGEL0FokVn9voGnvbtLtk7xcA1mCDJISzQR8fOhTGcChVrQVcvhLjCtPUclAU4tEJ9BAQICKGMo0DWEU10bqSArBJD1E1TiJzRHCPmwVnzmFTYFGBfvIZxEF6iLCINLMO0Z1u3TztywjxzxftZO_uy_RTn8yHMwH96PHU7Sb-f-tHeUMVdP3jTkHsSKVF243fQEj88In |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2010+IEEE+Computer+Society+Conference+on+Computer+Vision+and+Pattern+Recognition&rft.atitle=Asymmetric+region-to-image+matching+for+comparing+images+with+generic+object+categories&rft.au=Jaechul+Kim&rft.au=Grauman%2C+K&rft.date=2010-06-01&rft.pub=IEEE&rft.isbn=9781424469840&rft.issn=1063-6919&rft.eissn=1063-6919&rft.spage=2344&rft.epage=2351&rft_id=info:doi/10.1109%2FCVPR.2010.5539923&rft.externalDocID=5539923 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6919&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6919&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6919&client=summon |