Multi-objective whale optimization
This paper deals with designing a multi-objective algorithm based on recently proposed Whale Optimization Algorithm (WOA), termed as MOWOA. The original WOA algorithm is popular among the researchers due to the encircling moments of agents (Humpback whales) in the search space which provides proper...
Saved in:
Published in | TENCON ... IEEE Region Ten Conference pp. 2747 - 2752 |
---|---|
Main Authors | , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.11.2017
|
Subjects | |
Online Access | Get full text |
ISSN | 2159-3450 |
DOI | 10.1109/TENCON.2017.8228329 |
Cover
Loading…
Abstract | This paper deals with designing a multi-objective algorithm based on recently proposed Whale Optimization Algorithm (WOA), termed as MOWOA. The original WOA algorithm is popular among the researchers due to the encircling moments of agents (Humpback whales) in the search space which provides proper balance among the exploration and exploitation, faster convergence and lessor number of parameters. The proposed multi-objective version posses all the above benefits of the original algorithm, in addition it reveals accurate convergence to the true Pareto fronts and maintain effective diversity among the solutions. The performance is demonstrated on six unconstrained bi-objective functions of IEEE CEC 2009. The obtained results are compared with that achieved by multi-objective Grey Wolf Optimization (MOGWO), multi-objective Particle Swarm Optimization (MOPSO), multi-objective Evolutionary Algorithm based on Decomposition(MOEA/D). |
---|---|
AbstractList | This paper deals with designing a multi-objective algorithm based on recently proposed Whale Optimization Algorithm (WOA), termed as MOWOA. The original WOA algorithm is popular among the researchers due to the encircling moments of agents (Humpback whales) in the search space which provides proper balance among the exploration and exploitation, faster convergence and lessor number of parameters. The proposed multi-objective version posses all the above benefits of the original algorithm, in addition it reveals accurate convergence to the true Pareto fronts and maintain effective diversity among the solutions. The performance is demonstrated on six unconstrained bi-objective functions of IEEE CEC 2009. The obtained results are compared with that achieved by multi-objective Grey Wolf Optimization (MOGWO), multi-objective Particle Swarm Optimization (MOPSO), multi-objective Evolutionary Algorithm based on Decomposition(MOEA/D). |
Author | Kumawat, Ishwar Ram Nanda, Satyasai Jagannath Maddila, Ravi Kumar |
Author_xml | – sequence: 1 givenname: Ishwar Ram surname: Kumawat fullname: Kumawat, Ishwar Ram email: 2015pwc5359@mnit.ac.in organization: Dept. of Electron. & Commun. Eng., Malaviya Nat. Inst. of Technol. Jaipur, Jaipur, India – sequence: 2 givenname: Satyasai Jagannath surname: Nanda fullname: Nanda, Satyasai Jagannath email: nanda.satyasai@gmail.com organization: Dept. of Electron. & Commun. Eng., Malaviya Nat. Inst. of Technol. Jaipur, Jaipur, India – sequence: 3 givenname: Ravi Kumar surname: Maddila fullname: Maddila, Ravi Kumar email: rkmaddila.ece@mnit.ac.in organization: Dept. of Electron. & Commun. Eng., Malaviya Nat. Inst. of Technol. Jaipur, Jaipur, India |
BookMark | eNotj0tLw0AURkdRsNb8gm6K-8R777wySwn1AbXd1HWZTG5wSpqUZlT011uw3-bAWRz4bsVVP_QsxAyhQAT3sFmsqvWqIEBblESlJHchMmdL1OAAUSpzKSaE2uVSabgR2Tju4DQDBKWdiPu3zy7FfKh3HFL84vn3h-94PhxS3Mdfn-LQ34nr1ncjZ2dOxfvTYlO95Mv182v1uMwjWp3yRlvLSHXTtIECgA5t8MY2AaE0joPyNXlLEsGfhDIK2OugveXGUAtKTsXsvxuZeXs4xr0__mzPr-Qfh5FCIg |
ContentType | Conference Proceeding |
DBID | 6IE 6IH CBEJK RIE RIO |
DOI | 10.1109/TENCON.2017.8228329 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISBN | 9781509011346 150901134X |
EISSN | 2159-3450 |
EndPage | 2752 |
ExternalDocumentID | 8228329 |
Genre | orig-research |
GroupedDBID | 6IE 6IF 6IH 6IK 6IL 6IM 6IN AAJGR AAWTH ABLEC ACGFS ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IJVOP IPLJI M43 OCL RIE RIL RIO |
ID | FETCH-LOGICAL-i175t-d577e12bddfc2c005cfca67dc10869ec4ab2a72310a0864640ea5c5a7ed62f043 |
IEDL.DBID | RIE |
IngestDate | Wed Aug 27 02:40:44 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i175t-d577e12bddfc2c005cfca67dc10869ec4ab2a72310a0864640ea5c5a7ed62f043 |
PageCount | 6 |
ParticipantIDs | ieee_primary_8228329 |
PublicationCentury | 2000 |
PublicationDate | 2017-Nov. |
PublicationDateYYYYMMDD | 2017-11-01 |
PublicationDate_xml | – month: 11 year: 2017 text: 2017-Nov. |
PublicationDecade | 2010 |
PublicationTitle | TENCON ... IEEE Region Ten Conference |
PublicationTitleAbbrev | TENCON |
PublicationYear | 2017 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0000602087 |
Score | 1.9546416 |
Snippet | This paper deals with designing a multi-objective algorithm based on recently proposed Whale Optimization Algorithm (WOA), termed as MOWOA. The original WOA... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 2747 |
SubjectTerms | Algorithm design and analysis Benchmark testing Convergence IEEE Regions MOEA/D MOGWO MOPSO Pareto front Pareto optimization Whale Optimization Algorithm Whales |
Title | Multi-objective whale optimization |
URI | https://ieeexplore.ieee.org/document/8228329 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1La8MwDBZtTzttox17E8aOc5q4iZ2cR0sZtOzQQm_FlhX2YM0YKYP9-slJ1rGxw25GYPxC-ixbnwRwnVJG_r9JoMnZQSkSEoxySpjYuNgVZpRJz0aezdV0mdyt0lUHbnZcGCKqg88o9M36L9-VuPVPZcPM52qReRe67Lg1XK3de0qkfLlJ3SYWiqN8uBizWzz30Vs6bHv-KKFSI8hkH2ZfYzeBI8_htrIhfvxKy_jfyR3A4JurF9zvUOgQOrTpw1XNqxWlfWrsWfD-wEAQlGwfXlri5QCWk_HidiraagjikSG-Ei7VmmJpnStQIisPFmiUduhrJeWEibHSaH9dMyxIVBKRSTE1mpySRZSMjqC3KTd0DEFBI2kxJTSsjWhZh52LY4qcYmunKDuBvl_f-rVJeLFul3b6t_gM9vweNwS9c-hVb1u6YKSu7GV9RJ9iWpR_ |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEB5qPehJpRXfLuLRbDfpJtk9S0vVtnhoobeSxyw-cFdki-CvN9ldK4oHbyEQ8mLmy0zmmwG45Jig_28iRqXOQMliJA7lBFFUWWoz1U-YZyNPpmI0j28XfNGCqzUXBhGr4DMMfbP6y7eFWXlXWS_xuVpYugGbDvc5rdlaa49KJHzBSdmkFqJR2psNnGE89fFbMmzG_iiiUmHIcAcmX7PXoSPP4arUofn4lZjxv8vbhe43Wy-4X-PQHrQw78BFxawlhX6qNVrw_uCgICichnhpqJddmA8Hs-sRaeohkEcH8iWxXEqkTFubGWac-JjMKCGt8dWSUjSx0kxJ_2BTriMWcYSKG64kWsGyKO7vQzsvcjyAIMM-04ajUU4ejXZSbC2lGFnh9J3A5BA6fn_L1zrlxbLZ2tHf3eewNZpNxsvxzfTuGLb9edd0vRNol28rPHW4Xeqz6ro-AVYfl8g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=TENCON+...+IEEE+Region+Ten+Conference&rft.atitle=Multi-objective+whale+optimization&rft.au=Kumawat%2C+Ishwar+Ram&rft.au=Nanda%2C+Satyasai+Jagannath&rft.au=Maddila%2C+Ravi+Kumar&rft.date=2017-11-01&rft.pub=IEEE&rft.eissn=2159-3450&rft.spage=2747&rft.epage=2752&rft_id=info:doi/10.1109%2FTENCON.2017.8228329&rft.externalDocID=8228329 |