Multi-objective whale optimization

This paper deals with designing a multi-objective algorithm based on recently proposed Whale Optimization Algorithm (WOA), termed as MOWOA. The original WOA algorithm is popular among the researchers due to the encircling moments of agents (Humpback whales) in the search space which provides proper...

Full description

Saved in:
Bibliographic Details
Published inTENCON ... IEEE Region Ten Conference pp. 2747 - 2752
Main Authors Kumawat, Ishwar Ram, Nanda, Satyasai Jagannath, Maddila, Ravi Kumar
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.11.2017
Subjects
Online AccessGet full text
ISSN2159-3450
DOI10.1109/TENCON.2017.8228329

Cover

Loading…
Abstract This paper deals with designing a multi-objective algorithm based on recently proposed Whale Optimization Algorithm (WOA), termed as MOWOA. The original WOA algorithm is popular among the researchers due to the encircling moments of agents (Humpback whales) in the search space which provides proper balance among the exploration and exploitation, faster convergence and lessor number of parameters. The proposed multi-objective version posses all the above benefits of the original algorithm, in addition it reveals accurate convergence to the true Pareto fronts and maintain effective diversity among the solutions. The performance is demonstrated on six unconstrained bi-objective functions of IEEE CEC 2009. The obtained results are compared with that achieved by multi-objective Grey Wolf Optimization (MOGWO), multi-objective Particle Swarm Optimization (MOPSO), multi-objective Evolutionary Algorithm based on Decomposition(MOEA/D).
AbstractList This paper deals with designing a multi-objective algorithm based on recently proposed Whale Optimization Algorithm (WOA), termed as MOWOA. The original WOA algorithm is popular among the researchers due to the encircling moments of agents (Humpback whales) in the search space which provides proper balance among the exploration and exploitation, faster convergence and lessor number of parameters. The proposed multi-objective version posses all the above benefits of the original algorithm, in addition it reveals accurate convergence to the true Pareto fronts and maintain effective diversity among the solutions. The performance is demonstrated on six unconstrained bi-objective functions of IEEE CEC 2009. The obtained results are compared with that achieved by multi-objective Grey Wolf Optimization (MOGWO), multi-objective Particle Swarm Optimization (MOPSO), multi-objective Evolutionary Algorithm based on Decomposition(MOEA/D).
Author Kumawat, Ishwar Ram
Nanda, Satyasai Jagannath
Maddila, Ravi Kumar
Author_xml – sequence: 1
  givenname: Ishwar Ram
  surname: Kumawat
  fullname: Kumawat, Ishwar Ram
  email: 2015pwc5359@mnit.ac.in
  organization: Dept. of Electron. & Commun. Eng., Malaviya Nat. Inst. of Technol. Jaipur, Jaipur, India
– sequence: 2
  givenname: Satyasai Jagannath
  surname: Nanda
  fullname: Nanda, Satyasai Jagannath
  email: nanda.satyasai@gmail.com
  organization: Dept. of Electron. & Commun. Eng., Malaviya Nat. Inst. of Technol. Jaipur, Jaipur, India
– sequence: 3
  givenname: Ravi Kumar
  surname: Maddila
  fullname: Maddila, Ravi Kumar
  email: rkmaddila.ece@mnit.ac.in
  organization: Dept. of Electron. & Commun. Eng., Malaviya Nat. Inst. of Technol. Jaipur, Jaipur, India
BookMark eNotj0tLw0AURkdRsNb8gm6K-8R777wySwn1AbXd1HWZTG5wSpqUZlT011uw3-bAWRz4bsVVP_QsxAyhQAT3sFmsqvWqIEBblESlJHchMmdL1OAAUSpzKSaE2uVSabgR2Tju4DQDBKWdiPu3zy7FfKh3HFL84vn3h-94PhxS3Mdfn-LQ34nr1ncjZ2dOxfvTYlO95Mv182v1uMwjWp3yRlvLSHXTtIECgA5t8MY2AaE0joPyNXlLEsGfhDIK2OugveXGUAtKTsXsvxuZeXs4xr0__mzPr-Qfh5FCIg
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/TENCON.2017.8228329
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781509011346
150901134X
EISSN 2159-3450
EndPage 2752
ExternalDocumentID 8228329
Genre orig-research
GroupedDBID 6IE
6IF
6IH
6IK
6IL
6IM
6IN
AAJGR
AAWTH
ABLEC
ACGFS
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IJVOP
IPLJI
M43
OCL
RIE
RIL
RIO
ID FETCH-LOGICAL-i175t-d577e12bddfc2c005cfca67dc10869ec4ab2a72310a0864640ea5c5a7ed62f043
IEDL.DBID RIE
IngestDate Wed Aug 27 02:40:44 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-d577e12bddfc2c005cfca67dc10869ec4ab2a72310a0864640ea5c5a7ed62f043
PageCount 6
ParticipantIDs ieee_primary_8228329
PublicationCentury 2000
PublicationDate 2017-Nov.
PublicationDateYYYYMMDD 2017-11-01
PublicationDate_xml – month: 11
  year: 2017
  text: 2017-Nov.
PublicationDecade 2010
PublicationTitle TENCON ... IEEE Region Ten Conference
PublicationTitleAbbrev TENCON
PublicationYear 2017
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0000602087
Score 1.9546416
Snippet This paper deals with designing a multi-objective algorithm based on recently proposed Whale Optimization Algorithm (WOA), termed as MOWOA. The original WOA...
SourceID ieee
SourceType Publisher
StartPage 2747
SubjectTerms Algorithm design and analysis
Benchmark testing
Convergence
IEEE Regions
MOEA/D
MOGWO
MOPSO
Pareto front
Pareto optimization
Whale Optimization Algorithm
Whales
Title Multi-objective whale optimization
URI https://ieeexplore.ieee.org/document/8228329
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1La8MwDBZtTzttox17E8aOc5q4iZ2cR0sZtOzQQm_FlhX2YM0YKYP9-slJ1rGxw25GYPxC-ixbnwRwnVJG_r9JoMnZQSkSEoxySpjYuNgVZpRJz0aezdV0mdyt0lUHbnZcGCKqg88o9M36L9-VuPVPZcPM52qReRe67Lg1XK3de0qkfLlJ3SYWiqN8uBizWzz30Vs6bHv-KKFSI8hkH2ZfYzeBI8_htrIhfvxKy_jfyR3A4JurF9zvUOgQOrTpw1XNqxWlfWrsWfD-wEAQlGwfXlri5QCWk_HidiraagjikSG-Ei7VmmJpnStQIisPFmiUduhrJeWEibHSaH9dMyxIVBKRSTE1mpySRZSMjqC3KTd0DEFBI2kxJTSsjWhZh52LY4qcYmunKDuBvl_f-rVJeLFul3b6t_gM9vweNwS9c-hVb1u6YKSu7GV9RJ9iWpR_
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEB5qPehJpRXfLuLRbDfpJtk9S0vVtnhoobeSxyw-cFdki-CvN9ldK4oHbyEQ8mLmy0zmmwG45Jig_28iRqXOQMliJA7lBFFUWWoz1U-YZyNPpmI0j28XfNGCqzUXBhGr4DMMfbP6y7eFWXlXWS_xuVpYugGbDvc5rdlaa49KJHzBSdmkFqJR2psNnGE89fFbMmzG_iiiUmHIcAcmX7PXoSPP4arUofn4lZjxv8vbhe43Wy-4X-PQHrQw78BFxawlhX6qNVrw_uCgICichnhpqJddmA8Hs-sRaeohkEcH8iWxXEqkTFubGWac-JjMKCGt8dWSUjSx0kxJ_2BTriMWcYSKG64kWsGyKO7vQzsvcjyAIMM-04ajUU4ejXZSbC2lGFnh9J3A5BA6fn_L1zrlxbLZ2tHf3eewNZpNxsvxzfTuGLb9edd0vRNol28rPHW4Xeqz6ro-AVYfl8g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=TENCON+...+IEEE+Region+Ten+Conference&rft.atitle=Multi-objective+whale+optimization&rft.au=Kumawat%2C+Ishwar+Ram&rft.au=Nanda%2C+Satyasai+Jagannath&rft.au=Maddila%2C+Ravi+Kumar&rft.date=2017-11-01&rft.pub=IEEE&rft.eissn=2159-3450&rft.spage=2747&rft.epage=2752&rft_id=info:doi/10.1109%2FTENCON.2017.8228329&rft.externalDocID=8228329