Using the inner-distance for classification of articulated shapes
We propose using the inner-distance between landmark points to build shape descriptors. The inner-distance is defined as the length of the shortest path between landmark points within the shape silhouette. We show that the inner-distance is articulation insensitive and more effective at capturing co...
Saved in:
Published in | 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05) Vol. 2; pp. 719 - 726 vol. 2 |
---|---|
Main Authors | , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
2005
|
Subjects | |
Online Access | Get full text |
ISBN | 0769523722 9780769523729 |
ISSN | 1063-6919 1063-6919 |
DOI | 10.1109/CVPR.2005.362 |
Cover
Loading…
Abstract | We propose using the inner-distance between landmark points to build shape descriptors. The inner-distance is defined as the length of the shortest path between landmark points within the shape silhouette. We show that the inner-distance is articulation insensitive and more effective at capturing complex shapes with part structures than Euclidean distance. To demonstrate this idea, it is used to build a new shape descriptor based on shape contexts. After that, we design a dynamic programming based method for shape matching and comparison. We have tested our approach on a variety of shape databases including an articulated shape dataset, MPEG7 CE-Shape-1, Kimia silhouettes, a Swedish leaf database and a human motion silhouette dataset. In all the experiments, our method demonstrates effective performance compared with other algorithms. |
---|---|
AbstractList | We propose using the inner-distance between landmark points to build shape descriptors. The inner-distance is defined as the length of the shortest path between landmark points within the shape silhouette. We show that the inner-distance is articulation insensitive and more effective at capturing complex shapes with part structures than Euclidean distance. To demonstrate this idea, it is used to build a new shape descriptor based on shape contexts. After that, we design a dynamic programming based method for shape matching and comparison. We have tested our approach on a variety of shape databases including an articulated shape dataset, MPEG7 CE-Shape-1, Kimia silhouettes, a Swedish leaf database and a human motion silhouette dataset. In all the experiments, our method demonstrates effective performance compared with other algorithms. |
Author | Ling, H. Jacobs, D.W. |
Author_xml | – sequence: 1 givenname: H. surname: Ling fullname: Ling, H. organization: Dept. of Comput. Sci., Maryland Univ., College Park, MD, USA – sequence: 2 givenname: D.W. surname: Jacobs fullname: Jacobs, D.W. organization: Dept. of Comput. Sci., Maryland Univ., College Park, MD, USA |
BookMark | eNpNjMFKAzEURYNWsK1dunKTH5gxLy_JTJalaBUKili3JZ282MiYKZO48O8t6MK7ORwO3BmbpCERY9cgagBhb1dvzy-1FELXaOQZm4IwWBkL9pzNRGOslthIOfkXLtki5w9xGlpslZyy5TbH9M7LgXhMicbKx1xc6oiHYeRd73KOIXauxCHxIXA3lth99a6Q5_ngjpSv2EVwfabFH-dse3_3unqoNk_rx9VyU0VodKm8agIAabDoQusg7DV4c3IlO2mUDHqPEqVojW-9Va11BE63RqD0GjXhnN38_kYi2h3H-OnG7x0o02hA_AFWpUw0 |
ContentType | Conference Proceeding |
DBID | 6IE 6IH CBEJK RIE RIO |
DOI | 10.1109/CVPR.2005.362 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE/IET Electronic Library IEEE Proceedings Order Plans (POP) 1998-present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Computer Science |
EISSN | 1063-6919 |
EndPage | 726 vol. 2 |
ExternalDocumentID | 1467513 |
Genre | orig-research |
GroupedDBID | 23M 29F 29O 6IE 6IH 6IK ABDPE ACGFS ALMA_UNASSIGNED_HOLDINGS CBEJK IPLJI M43 RIE RIO RNS |
ID | FETCH-LOGICAL-i175t-d47f11e5193af8a1fb51d6e5142c2642f5b3232086d8d9489ae1a586032d535e3 |
IEDL.DBID | RIE |
ISBN | 0769523722 9780769523729 |
ISSN | 1063-6919 |
IngestDate | Wed Aug 27 02:18:30 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i175t-d47f11e5193af8a1fb51d6e5142c2642f5b3232086d8d9489ae1a586032d535e3 |
ParticipantIDs | ieee_primary_1467513 |
PublicationCentury | 2000 |
PublicationDate | 20050000 |
PublicationDateYYYYMMDD | 2005-01-01 |
PublicationDate_xml | – year: 2005 text: 20050000 |
PublicationDecade | 2000 |
PublicationTitle | 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05) |
PublicationTitleAbbrev | CVPR |
PublicationYear | 2005 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0000393842 ssj0023720 ssj0003211698 |
Score | 1.9464468 |
Snippet | We propose using the inner-distance between landmark points to build shape descriptors. The inner-distance is defined as the length of the shortest path... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 719 |
SubjectTerms | Computer science Dynamic programming Educational institutions Euclidean distance Humans Jacobian matrices MPEG 7 Standard Shape measurement Testing |
Title | Using the inner-distance for classification of articulated shapes |
URI | https://ieeexplore.ieee.org/document/1467513 |
Volume | 2 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JSwMxFA61J09VW3EnB4-mbSbJdHKUYilCpYiV3kq2QRHaYqcXf73vZWZaEQ_eJi8QMlnI99aPkNtcONVPrWE8MYZJ7_pMq8QxL21fhcwOlEGD_uQpHc_k41zNG-RulwsTQojBZ6GLn9GX71dui6ayHt5qhRS1B6C4lblaO3sK5phmlZqHbQGaTap3HoUE2Vii5zMVLNVclyo8zAs6kqoST93W-2KcveHr9Lk0vQhk1PlBwRJfoFGLTOq5l4EnH91tYbvu61dZx__-3BHp7HP96HT3ih2TRliekFYFTml19Tcgqvkfalmb3Md4AwoQkkYGL-YRjOKAgISpQ1yOgUhx7-kqp_GUIl0YDLx5M-uw6ZDZ6OFlOGYVJQN7B5xRwBYOcs4Dwj6TZ4bnVnGfQlsmDqBVkisrAKOBnuQzr2WmTeBGZSlsh1dCBXFKmsvVMpwRyqVyKrGZssqDEitNrq0ArO-9UMI7eU7auEiLdVl1Y1Gtz8Xf4ktyGIuqRuPIFWkWn9twDXChsDfxnHwDim61eA |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTwIxEG4IHvSECsa3PXi0QLc7y-7REAkqEGLAcCN9bTQmQGS5-OuddnfBGA_etm3SdDtt5pvpzHyE3KZCQztSkvFAShYa3WYJBJqZULXBxqoD0jn0h6OoPw2fZjCrkLttLoy11gef2ab79G_5Zqk3zlXWcrcaHEXtHup94Hm21taj4rJM48LQc22Btk2UbN8UAsfH4t8-I8GihCe5EY8rw4GgqMVTtpNdOc5W93X8kjtfhOPU-UHC4nVQr0aG5erz0JOP5iZTTf31q7Djf3_vkDR22X50vNVjR6RiF8ekVsBTWlz-NXaVDBBlX53c-4gDiiCSeg4vZhwcdRMiFqbaIXMXiuSlT5cp9efUEYbhxOs3ubLrBpn2HibdPitIGdg7Io0MhdhJObcO-Mk0ljxVwE2E7TDQCK6CFJRAlIaWkolNEsaJtFxCHKE4DAiw4oRUF8uFPSWUh6AhUDEoMGjGhjJNlEC0b4wAYXR4Rupuk-arvO7GvNif87-7b8h-fzIczAePo-cLcuBLrHpXySWpZp8be4XgIVPX_sx8AzuauME |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2005+IEEE+Computer+Society+Conference+on+Computer+Vision+and+Pattern+Recognition+%28CVPR%2705%29&rft.atitle=Using+the+inner-distance+for+classification+of+articulated+shapes&rft.au=Ling%2C+H.&rft.au=Jacobs%2C+D.W.&rft.date=2005-01-01&rft.pub=IEEE&rft.isbn=9780769523729&rft.issn=1063-6919&rft.eissn=1063-6919&rft.volume=2&rft.spage=719&rft.epage=726+vol.+2&rft_id=info:doi/10.1109%2FCVPR.2005.362&rft.externalDocID=1467513 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6919&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6919&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6919&client=summon |