Using the inner-distance for classification of articulated shapes

We propose using the inner-distance between landmark points to build shape descriptors. The inner-distance is defined as the length of the shortest path between landmark points within the shape silhouette. We show that the inner-distance is articulation insensitive and more effective at capturing co...

Full description

Saved in:
Bibliographic Details
Published in2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05) Vol. 2; pp. 719 - 726 vol. 2
Main Authors Ling, H., Jacobs, D.W.
Format Conference Proceeding
LanguageEnglish
Published IEEE 2005
Subjects
Online AccessGet full text
ISBN0769523722
9780769523729
ISSN1063-6919
1063-6919
DOI10.1109/CVPR.2005.362

Cover

Loading…
Abstract We propose using the inner-distance between landmark points to build shape descriptors. The inner-distance is defined as the length of the shortest path between landmark points within the shape silhouette. We show that the inner-distance is articulation insensitive and more effective at capturing complex shapes with part structures than Euclidean distance. To demonstrate this idea, it is used to build a new shape descriptor based on shape contexts. After that, we design a dynamic programming based method for shape matching and comparison. We have tested our approach on a variety of shape databases including an articulated shape dataset, MPEG7 CE-Shape-1, Kimia silhouettes, a Swedish leaf database and a human motion silhouette dataset. In all the experiments, our method demonstrates effective performance compared with other algorithms.
AbstractList We propose using the inner-distance between landmark points to build shape descriptors. The inner-distance is defined as the length of the shortest path between landmark points within the shape silhouette. We show that the inner-distance is articulation insensitive and more effective at capturing complex shapes with part structures than Euclidean distance. To demonstrate this idea, it is used to build a new shape descriptor based on shape contexts. After that, we design a dynamic programming based method for shape matching and comparison. We have tested our approach on a variety of shape databases including an articulated shape dataset, MPEG7 CE-Shape-1, Kimia silhouettes, a Swedish leaf database and a human motion silhouette dataset. In all the experiments, our method demonstrates effective performance compared with other algorithms.
Author Ling, H.
Jacobs, D.W.
Author_xml – sequence: 1
  givenname: H.
  surname: Ling
  fullname: Ling, H.
  organization: Dept. of Comput. Sci., Maryland Univ., College Park, MD, USA
– sequence: 2
  givenname: D.W.
  surname: Jacobs
  fullname: Jacobs, D.W.
  organization: Dept. of Comput. Sci., Maryland Univ., College Park, MD, USA
BookMark eNpNjMFKAzEURYNWsK1dunKTH5gxLy_JTJalaBUKili3JZ282MiYKZO48O8t6MK7ORwO3BmbpCERY9cgagBhb1dvzy-1FELXaOQZm4IwWBkL9pzNRGOslthIOfkXLtki5w9xGlpslZyy5TbH9M7LgXhMicbKx1xc6oiHYeRd73KOIXauxCHxIXA3lth99a6Q5_ngjpSv2EVwfabFH-dse3_3unqoNk_rx9VyU0VodKm8agIAabDoQusg7DV4c3IlO2mUDHqPEqVojW-9Va11BE63RqD0GjXhnN38_kYi2h3H-OnG7x0o02hA_AFWpUw0
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/CVPR.2005.362
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE/IET Electronic Library
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Computer Science
EISSN 1063-6919
EndPage 726 vol. 2
ExternalDocumentID 1467513
Genre orig-research
GroupedDBID 23M
29F
29O
6IE
6IH
6IK
ABDPE
ACGFS
ALMA_UNASSIGNED_HOLDINGS
CBEJK
IPLJI
M43
RIE
RIO
RNS
ID FETCH-LOGICAL-i175t-d47f11e5193af8a1fb51d6e5142c2642f5b3232086d8d9489ae1a586032d535e3
IEDL.DBID RIE
ISBN 0769523722
9780769523729
ISSN 1063-6919
IngestDate Wed Aug 27 02:18:30 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-d47f11e5193af8a1fb51d6e5142c2642f5b3232086d8d9489ae1a586032d535e3
ParticipantIDs ieee_primary_1467513
PublicationCentury 2000
PublicationDate 20050000
PublicationDateYYYYMMDD 2005-01-01
PublicationDate_xml – year: 2005
  text: 20050000
PublicationDecade 2000
PublicationTitle 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05)
PublicationTitleAbbrev CVPR
PublicationYear 2005
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0000393842
ssj0023720
ssj0003211698
Score 1.9464468
Snippet We propose using the inner-distance between landmark points to build shape descriptors. The inner-distance is defined as the length of the shortest path...
SourceID ieee
SourceType Publisher
StartPage 719
SubjectTerms Computer science
Dynamic programming
Educational institutions
Euclidean distance
Humans
Jacobian matrices
MPEG 7 Standard
Shape measurement
Testing
Title Using the inner-distance for classification of articulated shapes
URI https://ieeexplore.ieee.org/document/1467513
Volume 2
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JSwMxFA61J09VW3EnB4-mbSbJdHKUYilCpYiV3kq2QRHaYqcXf73vZWZaEQ_eJi8QMlnI99aPkNtcONVPrWE8MYZJ7_pMq8QxL21fhcwOlEGD_uQpHc_k41zNG-RulwsTQojBZ6GLn9GX71dui6ayHt5qhRS1B6C4lblaO3sK5phmlZqHbQGaTap3HoUE2Vii5zMVLNVclyo8zAs6kqoST93W-2KcveHr9Lk0vQhk1PlBwRJfoFGLTOq5l4EnH91tYbvu61dZx__-3BHp7HP96HT3ih2TRliekFYFTml19Tcgqvkfalmb3Md4AwoQkkYGL-YRjOKAgISpQ1yOgUhx7-kqp_GUIl0YDLx5M-uw6ZDZ6OFlOGYVJQN7B5xRwBYOcs4Dwj6TZ4bnVnGfQlsmDqBVkisrAKOBnuQzr2WmTeBGZSlsh1dCBXFKmsvVMpwRyqVyKrGZssqDEitNrq0ArO-9UMI7eU7auEiLdVl1Y1Gtz8Xf4ktyGIuqRuPIFWkWn9twDXChsDfxnHwDim61eA
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTwIxEG4IHvSECsa3PXi0QLc7y-7REAkqEGLAcCN9bTQmQGS5-OuddnfBGA_etm3SdDtt5pvpzHyE3KZCQztSkvFAShYa3WYJBJqZULXBxqoD0jn0h6OoPw2fZjCrkLttLoy11gef2ab79G_5Zqk3zlXWcrcaHEXtHup94Hm21taj4rJM48LQc22Btk2UbN8UAsfH4t8-I8GihCe5EY8rw4GgqMVTtpNdOc5W93X8kjtfhOPU-UHC4nVQr0aG5erz0JOP5iZTTf31q7Djf3_vkDR22X50vNVjR6RiF8ekVsBTWlz-NXaVDBBlX53c-4gDiiCSeg4vZhwcdRMiFqbaIXMXiuSlT5cp9efUEYbhxOs3ubLrBpn2HibdPitIGdg7Io0MhdhJObcO-Mk0ljxVwE2E7TDQCK6CFJRAlIaWkolNEsaJtFxCHKE4DAiw4oRUF8uFPSWUh6AhUDEoMGjGhjJNlEC0b4wAYXR4Rupuk-arvO7GvNif87-7b8h-fzIczAePo-cLcuBLrHpXySWpZp8be4XgIVPX_sx8AzuauME
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2005+IEEE+Computer+Society+Conference+on+Computer+Vision+and+Pattern+Recognition+%28CVPR%2705%29&rft.atitle=Using+the+inner-distance+for+classification+of+articulated+shapes&rft.au=Ling%2C+H.&rft.au=Jacobs%2C+D.W.&rft.date=2005-01-01&rft.pub=IEEE&rft.isbn=9780769523729&rft.issn=1063-6919&rft.eissn=1063-6919&rft.volume=2&rft.spage=719&rft.epage=726+vol.+2&rft_id=info:doi/10.1109%2FCVPR.2005.362&rft.externalDocID=1467513
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6919&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6919&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6919&client=summon