Discovering frequent arrangements of temporal intervals
In this paper we study a new problem in temporal pattern mining: discovering frequent arrangements of temporal intervals. We assume that the database consists of sequences of events, where an event occurs during a time-interval. The goal is to mine arrangements of event intervals that appear frequen...
Saved in:
Published in | Fifth IEEE International Conference on Data Mining (ICDM'05) p. 8 pp. |
---|---|
Main Authors | , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
2005
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this paper we study a new problem in temporal pattern mining: discovering frequent arrangements of temporal intervals. We assume that the database consists of sequences of events, where an event occurs during a time-interval. The goal is to mine arrangements of event intervals that appear frequently in the database. There are many applications where these type of patterns can be useful, including data network, scientific, and financial applications. Efficient methods to find frequent arrangements of temporal intervals using both breadth first and depth first search techniques are described. The performance of the proposed algorithms is evaluated and compared with other approaches on real datasets (American sign language streams and network data) and large synthetic datasets. |
---|---|
AbstractList | In this paper we study a new problem in temporal pattern mining: discovering frequent arrangements of temporal intervals. We assume that the database consists of sequences of events, where an event occurs during a time-interval. The goal is to mine arrangements of event intervals that appear frequently in the database. There are many applications where these type of patterns can be useful, including data network, scientific, and financial applications. Efficient methods to find frequent arrangements of temporal intervals using both breadth first and depth first search techniques are described. The performance of the proposed algorithms is evaluated and compared with other approaches on real datasets (American sign language streams and network data) and large synthetic datasets. |
Author | Gunopulos, D. Kollios, G. Sclaroff, S. Papapetrou, P. |
Author_xml | – sequence: 1 givenname: P. surname: Papapetrou fullname: Papapetrou, P. organization: Dept. of Comput. Sci., Boston Univ., MA, USA – sequence: 2 givenname: G. surname: Kollios fullname: Kollios, G. organization: Dept. of Comput. Sci., Boston Univ., MA, USA – sequence: 3 givenname: S. surname: Sclaroff fullname: Sclaroff, S. organization: Dept. of Comput. Sci., Boston Univ., MA, USA – sequence: 4 givenname: D. surname: Gunopulos fullname: Gunopulos, D. |
BookMark | eNotj7FOwzAURS0oEqFkY2PJDyTYsf3sjCilUKmIBebKdp8ro8YpTqjE32MJ7nKuznCle0MWcYxIyB2jDWO0e9j0q9empVQ2kl6QouVK1FpouCRlpzRV0Mm2VVosSMGkpLVQGq5JOU2fNEdKzZQqiFqFyY1nTCEeKp_w6xvjXJmUTDzgkPtUjb6acTiNyRyrEGdMZ3OcbsmVz8Dyn0vysX5671_q7dvzpn_c1oEpOdd7QT22BgzjGqjTwoIBkMp3RlC3t46CyB6stU7YfEs7pTU3TvksDOdLcv-3GxBxd0phMOlnxyRI6Dr-C-2jSsk |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/ICDM.2005.50 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 2374-8486 |
ExternalDocumentID | 1565699 |
Genre | orig-research |
GroupedDBID | 29O 6IE 6IF 6IH 6IK 6IL 6IN AAJGR ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IPLJI M43 OCL RIE RIL RNS |
ID | FETCH-LOGICAL-i175t-d40fe2a6a13860c84b6a6657f9a40cdbc06460c6bbbc4b1098c7883ac7fbc4a33 |
IEDL.DBID | RIE |
ISBN | 9780769522784 0769522785 |
ISSN | 1550-4786 |
IngestDate | Wed Jun 26 19:20:52 EDT 2024 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i175t-d40fe2a6a13860c84b6a6657f9a40cdbc06460c6bbbc4b1098c7883ac7fbc4a33 |
ParticipantIDs | ieee_primary_1565699 |
PublicationCentury | 2000 |
PublicationDate | 20050000 |
PublicationDateYYYYMMDD | 2005-01-01 |
PublicationDate_xml | – year: 2005 text: 20050000 |
PublicationDecade | 2000 |
PublicationTitle | Fifth IEEE International Conference on Data Mining (ICDM'05) |
PublicationTitleAbbrev | ICDM |
PublicationYear | 2005 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0000558177 ssj0036630 |
Score | 1.5720007 |
Snippet | In this paper we study a new problem in temporal pattern mining: discovering frequent arrangements of temporal intervals. We assume that the database consists... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 8 pp. |
SubjectTerms | Computer science Data mining Event detection Handicapped aids Intrusion detection Monitoring Transaction databases |
Title | Discovering frequent arrangements of temporal intervals |
URI | https://ieeexplore.ieee.org/document/1565699 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwED21nZgKtIhveWDEbdo4_phbUEEqYqBSt8rn2FIFalFIF349tpMGhBjYklOG5JL43t29dwa4GRupnLFItURNGc-RSqORukQlTDCtszx0dOdPfLZgj8ts2YLbRgtjrY3kMzsIh7GXn2_NLpTKhqOAPpRqQ1soVWm1mnpKkmVyJJpkK_WRNIohPQKnTEhepewqC9LPrJ68sz9nDSNeDR8m03lVaglS_B87rsSAc9-F-f5WK57J62BX4sB8_pri-N9nOYT-t7SPPDdB6whadnMM3f3eDqT-1XsgpusPE-id_iriiki4LokuiiBGiLI4snWkHmz1RtaROuk_5T4s7u9eJjNab7JA1x45lDRnibNjzfUolTwxkiHXoRvjlGaJydF4zOLtHBENQ-8haXzWnGojnDfoND2Bzma7sadAMBXC-oTIwwBkDsdK-OWU-_XTjKzTQp9BL_hh9V7N0VjVLjj_23wBB3FMaix3XEKnLHb2ygOAEq_jm_8CopGrBg |
link.rule.ids | 310,311,783,787,792,793,799,4057,4058,27937,55086 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED6VMsBUoEW8ycCI26Rx_JhbUAtNxdBK3SrbsaUK1KKQLvx6bCcNCDGwJScPycn2vb7vDuCurxg3SkskmBQIk0wipoREJuQhpliIJHMV3XRKRnP8tEgWDbivuTBaaw8-01336Gv52UZtXaqsFznvg_M92Ld-NSMlW6vOqIRJwiJah1uxtaWeDmnXIkwZKYN2njjyZ1L13tm94xoTz3vjwTAtky2OjP9j5oo3OY8tSHcfWyJNXrvbQnbV568-jv_9myPofJP7gpfabB1DQ69PoLWb7hBUh70NdLj6UA7gaVcFJveQ6yIQee7oCJ4YF2xMULW2egtWHjxpN3MH5o8Ps8EIVWMW0Mr6DgXKcGh0XxARxYyEimFJhKvHGC5wqDKprNdi5URKqbC0GmLKxs2xUNRYgYjjU2iuN2t9BoGMKdU2JLKOgMRG9jm1FyqxN6iKtBFUnEPb6WH5XnbSWFYquPhbfAsHo1k6WU7G0-dLOPRNU33y4wqaRb7V19YdKOSN3wVfysOuUQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Fifth+IEEE+International+Conference+on+Data+Mining+%28ICDM%2705%29&rft.atitle=Discovering+frequent+arrangements+of+temporal+intervals&rft.au=Papapetrou%2C+P.&rft.au=Kollios%2C+G.&rft.au=Sclaroff%2C+S.&rft.au=Gunopulos%2C+D.&rft.date=2005-01-01&rft.pub=IEEE&rft.isbn=9780769522784&rft.issn=1550-4786&rft.eissn=2374-8486&rft.spage=8+pp.&rft_id=info:doi/10.1109%2FICDM.2005.50&rft.externalDocID=1565699 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1550-4786&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1550-4786&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1550-4786&client=summon |