Discovering frequent arrangements of temporal intervals

In this paper we study a new problem in temporal pattern mining: discovering frequent arrangements of temporal intervals. We assume that the database consists of sequences of events, where an event occurs during a time-interval. The goal is to mine arrangements of event intervals that appear frequen...

Full description

Saved in:
Bibliographic Details
Published inFifth IEEE International Conference on Data Mining (ICDM'05) p. 8 pp.
Main Authors Papapetrou, P., Kollios, G., Sclaroff, S., Gunopulos, D.
Format Conference Proceeding
LanguageEnglish
Published IEEE 2005
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this paper we study a new problem in temporal pattern mining: discovering frequent arrangements of temporal intervals. We assume that the database consists of sequences of events, where an event occurs during a time-interval. The goal is to mine arrangements of event intervals that appear frequently in the database. There are many applications where these type of patterns can be useful, including data network, scientific, and financial applications. Efficient methods to find frequent arrangements of temporal intervals using both breadth first and depth first search techniques are described. The performance of the proposed algorithms is evaluated and compared with other approaches on real datasets (American sign language streams and network data) and large synthetic datasets.
AbstractList In this paper we study a new problem in temporal pattern mining: discovering frequent arrangements of temporal intervals. We assume that the database consists of sequences of events, where an event occurs during a time-interval. The goal is to mine arrangements of event intervals that appear frequently in the database. There are many applications where these type of patterns can be useful, including data network, scientific, and financial applications. Efficient methods to find frequent arrangements of temporal intervals using both breadth first and depth first search techniques are described. The performance of the proposed algorithms is evaluated and compared with other approaches on real datasets (American sign language streams and network data) and large synthetic datasets.
Author Gunopulos, D.
Kollios, G.
Sclaroff, S.
Papapetrou, P.
Author_xml – sequence: 1
  givenname: P.
  surname: Papapetrou
  fullname: Papapetrou, P.
  organization: Dept. of Comput. Sci., Boston Univ., MA, USA
– sequence: 2
  givenname: G.
  surname: Kollios
  fullname: Kollios, G.
  organization: Dept. of Comput. Sci., Boston Univ., MA, USA
– sequence: 3
  givenname: S.
  surname: Sclaroff
  fullname: Sclaroff, S.
  organization: Dept. of Comput. Sci., Boston Univ., MA, USA
– sequence: 4
  givenname: D.
  surname: Gunopulos
  fullname: Gunopulos, D.
BookMark eNotj7FOwzAURS0oEqFkY2PJDyTYsf3sjCilUKmIBebKdp8ro8YpTqjE32MJ7nKuznCle0MWcYxIyB2jDWO0e9j0q9empVQ2kl6QouVK1FpouCRlpzRV0Mm2VVosSMGkpLVQGq5JOU2fNEdKzZQqiFqFyY1nTCEeKp_w6xvjXJmUTDzgkPtUjb6acTiNyRyrEGdMZ3OcbsmVz8Dyn0vysX5671_q7dvzpn_c1oEpOdd7QT22BgzjGqjTwoIBkMp3RlC3t46CyB6stU7YfEs7pTU3TvksDOdLcv-3GxBxd0phMOlnxyRI6Dr-C-2jSsk
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICDM.2005.50
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2374-8486
ExternalDocumentID 1565699
Genre orig-research
GroupedDBID 29O
6IE
6IF
6IH
6IK
6IL
6IN
AAJGR
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IPLJI
M43
OCL
RIE
RIL
RNS
ID FETCH-LOGICAL-i175t-d40fe2a6a13860c84b6a6657f9a40cdbc06460c6bbbc4b1098c7883ac7fbc4a33
IEDL.DBID RIE
ISBN 9780769522784
0769522785
ISSN 1550-4786
IngestDate Wed Jun 26 19:20:52 EDT 2024
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-d40fe2a6a13860c84b6a6657f9a40cdbc06460c6bbbc4b1098c7883ac7fbc4a33
ParticipantIDs ieee_primary_1565699
PublicationCentury 2000
PublicationDate 20050000
PublicationDateYYYYMMDD 2005-01-01
PublicationDate_xml – year: 2005
  text: 20050000
PublicationDecade 2000
PublicationTitle Fifth IEEE International Conference on Data Mining (ICDM'05)
PublicationTitleAbbrev ICDM
PublicationYear 2005
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0000558177
ssj0036630
Score 1.5720007
Snippet In this paper we study a new problem in temporal pattern mining: discovering frequent arrangements of temporal intervals. We assume that the database consists...
SourceID ieee
SourceType Publisher
StartPage 8 pp.
SubjectTerms Computer science
Data mining
Event detection
Handicapped aids
Intrusion detection
Monitoring
Transaction databases
Title Discovering frequent arrangements of temporal intervals
URI https://ieeexplore.ieee.org/document/1565699
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwED21nZgKtIhveWDEbdo4_phbUEEqYqBSt8rn2FIFalFIF349tpMGhBjYklOG5JL43t29dwa4GRupnLFItURNGc-RSqORukQlTDCtszx0dOdPfLZgj8ts2YLbRgtjrY3kMzsIh7GXn2_NLpTKhqOAPpRqQ1soVWm1mnpKkmVyJJpkK_WRNIohPQKnTEhepewqC9LPrJ68sz9nDSNeDR8m03lVaglS_B87rsSAc9-F-f5WK57J62BX4sB8_pri-N9nOYT-t7SPPDdB6whadnMM3f3eDqT-1XsgpusPE-id_iriiki4LokuiiBGiLI4snWkHmz1RtaROuk_5T4s7u9eJjNab7JA1x45lDRnibNjzfUolTwxkiHXoRvjlGaJydF4zOLtHBENQ-8haXzWnGojnDfoND2Bzma7sadAMBXC-oTIwwBkDsdK-OWU-_XTjKzTQp9BL_hh9V7N0VjVLjj_23wBB3FMaix3XEKnLHb2ygOAEq_jm_8CopGrBg
link.rule.ids 310,311,783,787,792,793,799,4057,4058,27937,55086
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED6VMsBUoEW8ycCI26Rx_JhbUAtNxdBK3SrbsaUK1KKQLvx6bCcNCDGwJScPycn2vb7vDuCurxg3SkskmBQIk0wipoREJuQhpliIJHMV3XRKRnP8tEgWDbivuTBaaw8-01336Gv52UZtXaqsFznvg_M92Ld-NSMlW6vOqIRJwiJah1uxtaWeDmnXIkwZKYN2njjyZ1L13tm94xoTz3vjwTAtky2OjP9j5oo3OY8tSHcfWyJNXrvbQnbV568-jv_9myPofJP7gpfabB1DQ69PoLWb7hBUh70NdLj6UA7gaVcFJveQ6yIQee7oCJ4YF2xMULW2egtWHjxpN3MH5o8Ps8EIVWMW0Mr6DgXKcGh0XxARxYyEimFJhKvHGC5wqDKprNdi5URKqbC0GmLKxs2xUNRYgYjjU2iuN2t9BoGMKdU2JLKOgMRG9jm1FyqxN6iKtBFUnEPb6WH5XnbSWFYquPhbfAsHo1k6WU7G0-dLOPRNU33y4wqaRb7V19YdKOSN3wVfysOuUQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Fifth+IEEE+International+Conference+on+Data+Mining+%28ICDM%2705%29&rft.atitle=Discovering+frequent+arrangements+of+temporal+intervals&rft.au=Papapetrou%2C+P.&rft.au=Kollios%2C+G.&rft.au=Sclaroff%2C+S.&rft.au=Gunopulos%2C+D.&rft.date=2005-01-01&rft.pub=IEEE&rft.isbn=9780769522784&rft.issn=1550-4786&rft.eissn=2374-8486&rft.spage=8+pp.&rft_id=info:doi/10.1109%2FICDM.2005.50&rft.externalDocID=1565699
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1550-4786&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1550-4786&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1550-4786&client=summon