A Fuzzy time-series prediction model with multi-biological data for health management

This paper proposes a body weight prediction method using Fuzzy prediction model. Fuzzy prediction model is constructed by an autoregressive (AR) model based on body weight data and linear prediction models based on biological data. The biological data are obtained by pedometers such as number of st...

Full description

Saved in:
Bibliographic Details
Published in2012 Joint 6th International Conference on Soft Computing and Intelligent Systems (SCIS) and 13th International Symposium on Advanced Intelligent Systems (ISIS) pp. 1259 - 1264
Main Authors Tanii, H., Kuramoto, K., Nakajima, H., Kobashi, S., Tsuchiya, N., Hata, Y.
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.11.2012
Subjects
Online AccessGet full text
ISBN9781467327428
1467327425
DOI10.1109/SCIS-ISIS.2012.6505205

Cover

Abstract This paper proposes a body weight prediction method using Fuzzy prediction model. Fuzzy prediction model is constructed by an autoregressive (AR) model based on body weight data and linear prediction models based on biological data. The biological data are obtained by pedometers such as number of steps, calorie consumption and so on. The Fuzzy prediction model is fixed by solving Yule-Walker equation and minimizing the Akaike's Information Criterion. In our experiment, the model predicts body weight change for next p days where p is the order of AR model. Then, four linear prediction models related to the biological data are constructed by linear regression analysis. We make a fuzzy membership function based on mean absolute error between body weight data and predicted value of each prediction model. Furthermore, these models are optimized for each subject in prediction models which add the biological data to AR model based on the mean absolute error. We employed 452 volunteers, and collected their body weight time-series data and the biological data during 730 days. We use these data from 1st to 365th day as learning data to determine the Fuzzy prediction model. As the result, the Fuzzy prediction model obtained higher correlation coefficient between predicted and truth values than the AR model on most subjects. In addition, the Fuzzy prediction model obtained smaller mean absolute prediction error than the AR model.
AbstractList This paper proposes a body weight prediction method using Fuzzy prediction model. Fuzzy prediction model is constructed by an autoregressive (AR) model based on body weight data and linear prediction models based on biological data. The biological data are obtained by pedometers such as number of steps, calorie consumption and so on. The Fuzzy prediction model is fixed by solving Yule-Walker equation and minimizing the Akaike's Information Criterion. In our experiment, the model predicts body weight change for next p days where p is the order of AR model. Then, four linear prediction models related to the biological data are constructed by linear regression analysis. We make a fuzzy membership function based on mean absolute error between body weight data and predicted value of each prediction model. Furthermore, these models are optimized for each subject in prediction models which add the biological data to AR model based on the mean absolute error. We employed 452 volunteers, and collected their body weight time-series data and the biological data during 730 days. We use these data from 1st to 365th day as learning data to determine the Fuzzy prediction model. As the result, the Fuzzy prediction model obtained higher correlation coefficient between predicted and truth values than the AR model on most subjects. In addition, the Fuzzy prediction model obtained smaller mean absolute prediction error than the AR model.
Author Nakajima, H.
Hata, Y.
Kobashi, S.
Tsuchiya, N.
Tanii, H.
Kuramoto, K.
Author_xml – sequence: 1
  givenname: H.
  surname: Tanii
  fullname: Tanii, H.
  email: tanii@ieee.org
  organization: Grad. Sch. of Eng., Univ. of Hyogo, Himeji, Japan
– sequence: 2
  givenname: K.
  surname: Kuramoto
  fullname: Kuramoto, K.
  organization: Grad. Sch. of Eng., Univ. of Hyogo, Himeji, Japan
– sequence: 3
  givenname: H.
  surname: Nakajima
  fullname: Nakajima, H.
  organization: Technol. & Intellectual Property H.Q. Omron Corp. Kizugawa, Kizugawa, Japan
– sequence: 4
  givenname: S.
  surname: Kobashi
  fullname: Kobashi, S.
  organization: Grad. Sch. of Eng., Univ. of Hyogo, Himeji, Japan
– sequence: 5
  givenname: N.
  surname: Tsuchiya
  fullname: Tsuchiya, N.
  organization: Technol. & Intellectual Property H.Q. Omron Corp. Kizugawa, Kizugawa, Japan
– sequence: 6
  givenname: Y.
  surname: Hata
  fullname: Hata, Y.
  organization: Grad. Sch. of Eng., Univ. of Hyogo, Himeji, Japan
BookMark eNpVkF1LwzAYhSMqqLO_QJD8gdQ3SdM0l2M4LQy8qLseafJ2i_RjtBmy_Xon7sabczjw8FycB3LTDz0S8swh5RzMS7UoK1ZWZZUK4CLNFSgB6ookRhc8y7UUOuP8-t8WxR1JpukLAM4Ofc57sp7T5eF0OtIYOmQTjgEnuh_RBxfD0NNu8NjS7xB3tDu0MbA6DO2wDc621NtoaTOMdIe2_QVsb7fYYR8fyW1j2wmTS8_Ievn6uXhnq4-3cjFfscC1isxL8F4Y5QsvlXGZ09pbmdUcMmUMSO6VzL1vbJ03DdTOqboupABTFJlTWsoZefrzBkTc7MfQ2fG4uZwhfwDH8lYK
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/SCIS-ISIS.2012.6505205
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781467327411
1467327417
1467327433
9781467327435
EndPage 1264
ExternalDocumentID 6505205
Genre orig-research
GroupedDBID 6IE
6IF
6IK
6IL
6IN
AAJGR
AAWTH
ADFMO
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
IEGSK
IERZE
OCL
RIE
RIL
ID FETCH-LOGICAL-i175t-d30dd295d8d359c4c77da34b104599031d536ddfab6ff0bcc5bb83209884c5733
IEDL.DBID RIE
ISBN 9781467327428
1467327425
IngestDate Wed Aug 27 04:46:31 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-d30dd295d8d359c4c77da34b104599031d536ddfab6ff0bcc5bb83209884c5733
PageCount 6
ParticipantIDs ieee_primary_6505205
PublicationCentury 2000
PublicationDate 2012-Nov.
PublicationDateYYYYMMDD 2012-11-01
PublicationDate_xml – month: 11
  year: 2012
  text: 2012-Nov.
PublicationDecade 2010
PublicationTitle 2012 Joint 6th International Conference on Soft Computing and Intelligent Systems (SCIS) and 13th International Symposium on Advanced Intelligent Systems (ISIS)
PublicationTitleAbbrev SCIS-ISIS
PublicationYear 2012
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0001107001
Score 1.5252526
Snippet This paper proposes a body weight prediction method using Fuzzy prediction model. Fuzzy prediction model is constructed by an autoregressive (AR) model based...
SourceID ieee
SourceType Publisher
StartPage 1259
SubjectTerms autoregressive model
body weight
healthcare system
prediction model
time-series biological data
Title A Fuzzy time-series prediction model with multi-biological data for health management
URI https://ieeexplore.ieee.org/document/6505205
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFA9zJ08qm_hNDh5Nly1Nmx5lODZhItTBbiNfBRG3oe3B_fW-l3Ybigcvpc2hhPweeZ-_9wi5TYy1Ci5B5oTm4KDgIHfvFOPcxlaDSKkM2cjTp2Q8ix_nct4idzsujPc-FJ_5CF9DLt-tbIWhsl6CU9ewYekBiFnN1drHU8CPgWfgbiWpwAyk3LZ0ar5VwxDu86yXDyc5m-STHKu7BlHz5x8jVoKGGR2R6XZvdWHJW1SVJrKbX20b_7v5Y9Ldc_no805LnZCWX3bI7J6Oqs3mi-JoeYZS6D_p-gOTNggUDfNxKMZoaag4ZHWvJgSUYk0pBVOX1hRK-r4roOmS2ejhZThmzYAF9gpWQwn4cOcGmXTKCZkBOGnqtIgNuGgStJToOykS5wptkqLggKo0Bm4AnikVW2ykeEray9XSnxHqFJjpPjB10ePrG6Gk1ilPXaZ9Yd056eCRLNZ1D41FcxoXfy9fkkOEpeb8XZF2-VH5a1D-pbkJqH8DWnyqqg
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8JAEN4QPOhJDRjf7sGjLQvtttujIRKqQEwKCTfSfTQxRiDYHuyvd2ZbIBoPXpp2D81mv8nO85sh5D6QSgm4BB3tpQwcFBzkbrRwGFO-SkGkRIRs5PEkGM785zmfN8jDjgtjjLHFZ8bFV5vL1ytVYKisE-DUNWxYegB63-cVW2sfUQFPBp6WvRWEHuYg-bapU_0tao5wl0WdpB8nTpzECdZ39dz63z-GrFgdMzgm4-3uqtKSd7fIpavKX40b_7v9E9Les_no605PnZKGWbbI7JEOirL8ojhc3kE5NJ90vcG0DUJF7YQcilFaamsOnapbE0JKsaqUgrFLKxIl_diV0LTJbPA07Q-desSC8wZ2Qw4IMa17EddCezwCeMJQp54vwUnjoKe8ruZeoHWWyiDLGODKpYQ7gEVC-ApbKZ6R5nK1NOeEagGGurFcXfT5utITPE1DFuooNZnSF6SFR7JYV100FvVpXP69fEcOh9PxaDGKJy9X5AghqhiA16SZbwpzA6ZALm-tBHwDfpSt9w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2012+Joint+6th+International+Conference+on+Soft+Computing+and+Intelligent+Systems+%28SCIS%29+and+13th+International+Symposium+on+Advanced+Intelligent+Systems+%28ISIS%29&rft.atitle=A+Fuzzy+time-series+prediction+model+with+multi-biological+data+for+health+management&rft.au=Tanii%2C+H.&rft.au=Kuramoto%2C+K.&rft.au=Nakajima%2C+H.&rft.au=Kobashi%2C+S.&rft.date=2012-11-01&rft.pub=IEEE&rft.isbn=9781467327428&rft.spage=1259&rft.epage=1264&rft_id=info:doi/10.1109%2FSCIS-ISIS.2012.6505205&rft.externalDocID=6505205
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781467327428/lc.gif&client=summon&freeimage=true
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781467327428/mc.gif&client=summon&freeimage=true
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781467327428/sc.gif&client=summon&freeimage=true