Human Pose Estimation with Iterative Error Feedback
Hierarchical feature extractors such as Convolutional Networks (ConvNets) have achieved impressive performance on a variety of classification tasks using purely feedforward processing. Feedforward architectures can learn rich representations of the input space but do not explicitly model dependencie...
Saved in:
Published in | 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) pp. 4733 - 4742 |
---|---|
Main Authors | , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.06.2016
|
Subjects | |
Online Access | Get full text |
ISSN | 1063-6919 |
DOI | 10.1109/CVPR.2016.512 |
Cover
Loading…
Abstract | Hierarchical feature extractors such as Convolutional Networks (ConvNets) have achieved impressive performance on a variety of classification tasks using purely feedforward processing. Feedforward architectures can learn rich representations of the input space but do not explicitly model dependencies in the output spaces, that are quite structured for tasks such as articulated human pose estimation or object segmentation. Here we propose a framework that expands the expressive power of hierarchical feature extractors to encompass both input and output spaces, by introducing top-down feedback. Instead of directly predicting the outputs in one go, we use a self-correcting model that progressively changes an initial solution by feeding back error predictions, in a process we call Iterative Error Feedback (IEF). IEF shows excellent performance on the task of articulated pose estimation in the challenging MPII and LSP benchmarks, matching the state-of-the-art without requiring ground truth scale annotation. |
---|---|
AbstractList | Hierarchical feature extractors such as Convolutional Networks (ConvNets) have achieved impressive performance on a variety of classification tasks using purely feedforward processing. Feedforward architectures can learn rich representations of the input space but do not explicitly model dependencies in the output spaces, that are quite structured for tasks such as articulated human pose estimation or object segmentation. Here we propose a framework that expands the expressive power of hierarchical feature extractors to encompass both input and output spaces, by introducing top-down feedback. Instead of directly predicting the outputs in one go, we use a self-correcting model that progressively changes an initial solution by feeding back error predictions, in a process we call Iterative Error Feedback (IEF). IEF shows excellent performance on the task of articulated pose estimation in the challenging MPII and LSP benchmarks, matching the state-of-the-art without requiring ground truth scale annotation. |
Author | Malik, Jitendra Fragkiadaki, Katerina Carreira, Joao Agrawal, Pulkit |
Author_xml | – sequence: 1 givenname: Joao surname: Carreira fullname: Carreira, Joao email: carreira@eecs.berkeley.edu – sequence: 2 givenname: Pulkit surname: Agrawal fullname: Agrawal, Pulkit email: pulkitag@eecs.berkeley.edu – sequence: 3 givenname: Katerina surname: Fragkiadaki fullname: Fragkiadaki, Katerina email: katef@eecs.berkeley.edu – sequence: 4 givenname: Jitendra surname: Malik fullname: Malik, Jitendra email: malik@eecs.berkeley.edu |
BookMark | eNotjs1KxDAURqMoOI5dunKTF2jNbW6am6WU-YOBGQZ1O6TpLVadVtKq-PYWdHX4OPBxrsVF13csxC2oDEC5-_J5f8hyBUVmID8TibMEWFhNZADOxQxUodPCgbsSyTC8KqXAFQTkZkKvP0--k_t-YLkYxvbkx7bv5Hc7vsjNyHGaX5OJsY9yyVxXPrzdiMvGvw-c_HMunpaLx3KdbnerTfmwTVuwZkzrvCKNCgG5YV-jt45Z5zqwNpYCoUMOZJHqqdoq05iQYx2YDSI2VdBzcff32zLz8SNOcfHnaC0pItC_CRBGOA |
CODEN | IEEPAD |
ContentType | Conference Proceeding |
DBID | 6IE 6IH CBEJK RIE RIO |
DOI | 10.1109/CVPR.2016.512 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Computer Science |
EISBN | 9781467388511 1467388513 |
EISSN | 1063-6919 |
EndPage | 4742 |
ExternalDocumentID | 7780881 |
Genre | orig-research |
GroupedDBID | 23M 29F 29O 6IE 6IH 6IK ABDPE ACGFS ALMA_UNASSIGNED_HOLDINGS CBEJK IPLJI M43 RIE RIO RNS |
ID | FETCH-LOGICAL-i175t-d2b8340414efead4a79ee323ce3578c8494ec8748d512705f5c24dcee5444fbc3 |
IEDL.DBID | RIE |
IngestDate | Wed Aug 27 01:54:53 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i175t-d2b8340414efead4a79ee323ce3578c8494ec8748d512705f5c24dcee5444fbc3 |
PageCount | 10 |
ParticipantIDs | ieee_primary_7780881 |
PublicationCentury | 2000 |
PublicationDate | 2016-June |
PublicationDateYYYYMMDD | 2016-06-01 |
PublicationDate_xml | – month: 06 year: 2016 text: 2016-June |
PublicationDecade | 2010 |
PublicationTitle | 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) |
PublicationTitleAbbrev | CVPR |
PublicationYear | 2016 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0001968189 ssj0023720 ssj0003211698 |
Score | 2.5650487 |
Snippet | Hierarchical feature extractors such as Convolutional Networks (ConvNets) have achieved impressive performance on a variety of classification tasks using... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 4733 |
SubjectTerms | Feature extraction Heating Mathematical model Pose estimation Predictive models Training Two dimensional displays |
Title | Human Pose Estimation with Iterative Error Feedback |
URI | https://ieeexplore.ieee.org/document/7780881 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07b8IwELYoUyfaQtW3PHRsAtgXx54RiFaiQlWp2JBjX6QKiVQhLPz62kkIVdWhm31DdLJzvud3R8ijsKmz44c2sDzhAcjUeJFiAdeCJ2DRiBI-NnsV0wW8LKNlizw1WBhELIvPMPTLMpdvM7PzobJ-HEsnFM7XOXGOW4XVOsZTlHC6RzV77jwboZqMAvPTWI49Nvujj_mbL-wSYeSHUf6YrFIqlkmHzA4sVfUk63BXJKHZ_-rW-F-ez0jvCOGj80Y5nZMWbi5Ip7Y5aS3RW0c6jHU40LqEl4F9Os-2SMfuBajAjdRHbOlz2YTZvZB0nOdZTifu-4k26x5ZTMbvo2lQz1YIPp3BUASWJZLDAIaAqfuZQMcKkTNu0Le_MRIUoJExSBv53HSURoaBdUxHAJAmhl-S9ibb4BWhA9AMhdFsoCOwEpVgWnM1RMYtF6iuSdcfy-qrap-xqk_k5m_yLTn111JVY92RdpHv8N7p_SJ5KC_8G01DqfU |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8JAEN4QPegJFYxv9-DRFrqvds8EAgqEGDDcyHZ3mhgSakq5-OvdbUsxxoO3dg7NZLezMzsz33wIPQmT2Dg-MJ6hMfVYlGhnUsSjStCYGdCigI9NpmK4YC9Lvmyg5xoLAwBF8xn47rGo5ZtU71yqrBOGkTUKe9c5tn6fByVa65BRkcJ6H1m_U3u3EbKuKRDHx3KYstnpvc_eXGuX8Lmjo_zBrVK4lkETTfZKlR0la3-Xx77--jWv8b9an6H2AcSHZ7V7OkcN2FygZhV14sqmt1a0J3bYy1qIFql9PEu3gPv2DCjhjdjlbPGoGMNsz0jcz7I0wwP7_VjpdRstBv15b-hV7Arehw0Zcs-QOKKsywIGif2dmAolACVUgxuAoyMmGegoZJHhrjrNE64JM1ZpzhhLYk0v0dEm3cAVwl2mCAitSFdxZiKQgihFZQCEGipAXqOWW5bVZzlAY1WtyM3f4kd0MpxPxqvxaPp6i07dFpW9WXfoKM92cG-jgDx-KDb_G18FrT4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2016+IEEE+Conference+on+Computer+Vision+and+Pattern+Recognition+%28CVPR%29&rft.atitle=Human+Pose+Estimation+with+Iterative+Error+Feedback&rft.au=Carreira%2C+Joao&rft.au=Agrawal%2C+Pulkit&rft.au=Fragkiadaki%2C+Katerina&rft.au=Malik%2C+Jitendra&rft.date=2016-06-01&rft.pub=IEEE&rft.eissn=1063-6919&rft.spage=4733&rft.epage=4742&rft_id=info:doi/10.1109%2FCVPR.2016.512&rft.externalDocID=7780881 |