Human Pose Estimation with Iterative Error Feedback

Hierarchical feature extractors such as Convolutional Networks (ConvNets) have achieved impressive performance on a variety of classification tasks using purely feedforward processing. Feedforward architectures can learn rich representations of the input space but do not explicitly model dependencie...

Full description

Saved in:
Bibliographic Details
Published in2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) pp. 4733 - 4742
Main Authors Carreira, Joao, Agrawal, Pulkit, Fragkiadaki, Katerina, Malik, Jitendra
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.06.2016
Subjects
Online AccessGet full text
ISSN1063-6919
DOI10.1109/CVPR.2016.512

Cover

Loading…
Abstract Hierarchical feature extractors such as Convolutional Networks (ConvNets) have achieved impressive performance on a variety of classification tasks using purely feedforward processing. Feedforward architectures can learn rich representations of the input space but do not explicitly model dependencies in the output spaces, that are quite structured for tasks such as articulated human pose estimation or object segmentation. Here we propose a framework that expands the expressive power of hierarchical feature extractors to encompass both input and output spaces, by introducing top-down feedback. Instead of directly predicting the outputs in one go, we use a self-correcting model that progressively changes an initial solution by feeding back error predictions, in a process we call Iterative Error Feedback (IEF). IEF shows excellent performance on the task of articulated pose estimation in the challenging MPII and LSP benchmarks, matching the state-of-the-art without requiring ground truth scale annotation.
AbstractList Hierarchical feature extractors such as Convolutional Networks (ConvNets) have achieved impressive performance on a variety of classification tasks using purely feedforward processing. Feedforward architectures can learn rich representations of the input space but do not explicitly model dependencies in the output spaces, that are quite structured for tasks such as articulated human pose estimation or object segmentation. Here we propose a framework that expands the expressive power of hierarchical feature extractors to encompass both input and output spaces, by introducing top-down feedback. Instead of directly predicting the outputs in one go, we use a self-correcting model that progressively changes an initial solution by feeding back error predictions, in a process we call Iterative Error Feedback (IEF). IEF shows excellent performance on the task of articulated pose estimation in the challenging MPII and LSP benchmarks, matching the state-of-the-art without requiring ground truth scale annotation.
Author Malik, Jitendra
Fragkiadaki, Katerina
Carreira, Joao
Agrawal, Pulkit
Author_xml – sequence: 1
  givenname: Joao
  surname: Carreira
  fullname: Carreira, Joao
  email: carreira@eecs.berkeley.edu
– sequence: 2
  givenname: Pulkit
  surname: Agrawal
  fullname: Agrawal, Pulkit
  email: pulkitag@eecs.berkeley.edu
– sequence: 3
  givenname: Katerina
  surname: Fragkiadaki
  fullname: Fragkiadaki, Katerina
  email: katef@eecs.berkeley.edu
– sequence: 4
  givenname: Jitendra
  surname: Malik
  fullname: Malik, Jitendra
  email: malik@eecs.berkeley.edu
BookMark eNotjs1KxDAURqMoOI5dunKTF2jNbW6am6WU-YOBGQZ1O6TpLVadVtKq-PYWdHX4OPBxrsVF13csxC2oDEC5-_J5f8hyBUVmID8TibMEWFhNZADOxQxUodPCgbsSyTC8KqXAFQTkZkKvP0--k_t-YLkYxvbkx7bv5Hc7vsjNyHGaX5OJsY9yyVxXPrzdiMvGvw-c_HMunpaLx3KdbnerTfmwTVuwZkzrvCKNCgG5YV-jt45Z5zqwNpYCoUMOZJHqqdoq05iQYx2YDSI2VdBzcff32zLz8SNOcfHnaC0pItC_CRBGOA
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/CVPR.2016.512
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Computer Science
EISBN 9781467388511
1467388513
EISSN 1063-6919
EndPage 4742
ExternalDocumentID 7780881
Genre orig-research
GroupedDBID 23M
29F
29O
6IE
6IH
6IK
ABDPE
ACGFS
ALMA_UNASSIGNED_HOLDINGS
CBEJK
IPLJI
M43
RIE
RIO
RNS
ID FETCH-LOGICAL-i175t-d2b8340414efead4a79ee323ce3578c8494ec8748d512705f5c24dcee5444fbc3
IEDL.DBID RIE
IngestDate Wed Aug 27 01:54:53 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-d2b8340414efead4a79ee323ce3578c8494ec8748d512705f5c24dcee5444fbc3
PageCount 10
ParticipantIDs ieee_primary_7780881
PublicationCentury 2000
PublicationDate 2016-June
PublicationDateYYYYMMDD 2016-06-01
PublicationDate_xml – month: 06
  year: 2016
  text: 2016-June
PublicationDecade 2010
PublicationTitle 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
PublicationTitleAbbrev CVPR
PublicationYear 2016
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0001968189
ssj0023720
ssj0003211698
Score 2.5650487
Snippet Hierarchical feature extractors such as Convolutional Networks (ConvNets) have achieved impressive performance on a variety of classification tasks using...
SourceID ieee
SourceType Publisher
StartPage 4733
SubjectTerms Feature extraction
Heating
Mathematical model
Pose estimation
Predictive models
Training
Two dimensional displays
Title Human Pose Estimation with Iterative Error Feedback
URI https://ieeexplore.ieee.org/document/7780881
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07b8IwELYoUyfaQtW3PHRsAtgXx54RiFaiQlWp2JBjX6QKiVQhLPz62kkIVdWhm31DdLJzvud3R8ijsKmz44c2sDzhAcjUeJFiAdeCJ2DRiBI-NnsV0wW8LKNlizw1WBhELIvPMPTLMpdvM7PzobJ-HEsnFM7XOXGOW4XVOsZTlHC6RzV77jwboZqMAvPTWI49Nvujj_mbL-wSYeSHUf6YrFIqlkmHzA4sVfUk63BXJKHZ_-rW-F-ez0jvCOGj80Y5nZMWbi5Ip7Y5aS3RW0c6jHU40LqEl4F9Os-2SMfuBajAjdRHbOlz2YTZvZB0nOdZTifu-4k26x5ZTMbvo2lQz1YIPp3BUASWJZLDAIaAqfuZQMcKkTNu0Le_MRIUoJExSBv53HSURoaBdUxHAJAmhl-S9ibb4BWhA9AMhdFsoCOwEpVgWnM1RMYtF6iuSdcfy-qrap-xqk_k5m_yLTn111JVY92RdpHv8N7p_SJ5KC_8G01DqfU
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8JAEN4QPegJFYxv9-DRFrqvds8EAgqEGDDcyHZ3mhgSakq5-OvdbUsxxoO3dg7NZLezMzsz33wIPQmT2Dg-MJ6hMfVYlGhnUsSjStCYGdCigI9NpmK4YC9Lvmyg5xoLAwBF8xn47rGo5ZtU71yqrBOGkTUKe9c5tn6fByVa65BRkcJ6H1m_U3u3EbKuKRDHx3KYstnpvc_eXGuX8Lmjo_zBrVK4lkETTfZKlR0la3-Xx77--jWv8b9an6H2AcSHZ7V7OkcN2FygZhV14sqmt1a0J3bYy1qIFql9PEu3gPv2DCjhjdjlbPGoGMNsz0jcz7I0wwP7_VjpdRstBv15b-hV7Arehw0Zcs-QOKKsywIGif2dmAolACVUgxuAoyMmGegoZJHhrjrNE64JM1ZpzhhLYk0v0dEm3cAVwl2mCAitSFdxZiKQgihFZQCEGipAXqOWW5bVZzlAY1WtyM3f4kd0MpxPxqvxaPp6i07dFpW9WXfoKM92cG-jgDx-KDb_G18FrT4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2016+IEEE+Conference+on+Computer+Vision+and+Pattern+Recognition+%28CVPR%29&rft.atitle=Human+Pose+Estimation+with+Iterative+Error+Feedback&rft.au=Carreira%2C+Joao&rft.au=Agrawal%2C+Pulkit&rft.au=Fragkiadaki%2C+Katerina&rft.au=Malik%2C+Jitendra&rft.date=2016-06-01&rft.pub=IEEE&rft.eissn=1063-6919&rft.spage=4733&rft.epage=4742&rft_id=info:doi/10.1109%2FCVPR.2016.512&rft.externalDocID=7780881