Optimal PID controller design for AVR system using particle swarm optimization algorithm
A proportional-integral-derivative (PID) controller is a generic feedback controller widely used in industrial control systems, process control, motor drive, and instrumentation. Despite the popularity, the tuning aspect of PID coefficients is a challenge for researchers and plant operators. In this...
Saved in:
Published in | 2011 24th Canadian Conference on Electrical and Computer Engineering(CCECE) pp. 000337 - 000340 |
---|---|
Main Authors | , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.05.2011
|
Subjects | |
Online Access | Get full text |
ISBN | 9781424497881 1424497884 |
ISSN | 0840-7789 |
DOI | 10.1109/CCECE.2011.6030468 |
Cover
Abstract | A proportional-integral-derivative (PID) controller is a generic feedback controller widely used in industrial control systems, process control, motor drive, and instrumentation. Despite the popularity, the tuning aspect of PID coefficients is a challenge for researchers and plant operators. In this paper Particle Swarm Optimization Algorithm is used to design the optimum PID controller parameters for a high order automatic voltage regulator (AVR). The proposed approach with new defined time-domain cost function, has a very easy implementation, stable convergence characteristic and ability of fast tuning of optimum PID controller parameters that requires fewer number of iterations. In order to evaluate the performance of the PSO-PID controller, the results are compared with the genetic algorithm (GA). The comparison shows the PSO-PID algorithm has more efficiency and robustness in improving the step response of an AVR system. |
---|---|
AbstractList | A proportional-integral-derivative (PID) controller is a generic feedback controller widely used in industrial control systems, process control, motor drive, and instrumentation. Despite the popularity, the tuning aspect of PID coefficients is a challenge for researchers and plant operators. In this paper Particle Swarm Optimization Algorithm is used to design the optimum PID controller parameters for a high order automatic voltage regulator (AVR). The proposed approach with new defined time-domain cost function, has a very easy implementation, stable convergence characteristic and ability of fast tuning of optimum PID controller parameters that requires fewer number of iterations. In order to evaluate the performance of the PSO-PID controller, the results are compared with the genetic algorithm (GA). The comparison shows the PSO-PID algorithm has more efficiency and robustness in improving the step response of an AVR system. |
Author | Rahimian, Mohammad Sadegh Raahemifar, Kaamran |
Author_xml | – sequence: 1 givenname: Mohammad Sadegh surname: Rahimian fullname: Rahimian, Mohammad Sadegh organization: Electr. & Comput. Eng. Dept., Ryerson Univ., Toronto, ON, Canada – sequence: 2 givenname: Kaamran surname: Raahemifar fullname: Raahemifar, Kaamran organization: Electr. & Comput. Eng. Dept., Ryerson Univ., Toronto, ON, Canada |
BookMark | eNpVkNFKwzAYRiNOcJt7Ab3JC7T-adMmuRy16mAwERXvRkzSGmmbkkRkPr0Vd-PV4dwc-L4Fmg1uMAhdEkgJAXFdVXVVpxkQkpaQAy35CVoJxgnNKJ3I6Ok_52SG5sApJIxxcY4WIXwAAOUlnaPX3RhtLzv8sLnByg3Ru64zHmsTbDvgxnm8fnnE4RCi6fFnsEOLR-mjVZ3B4Uv6Hrvfgv2W0boBy6513sb3_gKdNbILZnXkEj3f1k_VfbLd3W2q9TaxhBUx0VmuQIoMuFSsVMpMIrUAIVgjNKFAJW0KLd-arCxAgi4VUKEKrTkxoEy-RFd_XWuM2Y9-GuMP--Mx-Q9smFgx |
ContentType | Conference Proceeding |
DBID | 6IE 6IH CBEJK RIE RIO |
DOI | 10.1109/CCECE.2011.6030468 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISBN | 9781424497874 1424497892 1424497876 9781424497898 |
EndPage | 000340 |
ExternalDocumentID | 6030468 |
Genre | orig-research |
GroupedDBID | 29F 6IE 6IF 6IH 6IK 6IL 6IM 6IN AAJGR AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IJVOP IPLJI M43 OCL RIE RIL RIO RNS |
ID | FETCH-LOGICAL-i175t-d23c0a9208ac76cce0a9ad90997f9d1404a4f5dabf2650a0d6c049c5dd81e0ce3 |
IEDL.DBID | RIE |
ISBN | 9781424497881 1424497884 |
ISSN | 0840-7789 |
IngestDate | Wed Aug 27 02:43:05 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i175t-d23c0a9208ac76cce0a9ad90997f9d1404a4f5dabf2650a0d6c049c5dd81e0ce3 |
PageCount | 4 |
ParticipantIDs | ieee_primary_6030468 |
PublicationCentury | 2000 |
PublicationDate | 2011-May |
PublicationDateYYYYMMDD | 2011-05-01 |
PublicationDate_xml | – month: 05 year: 2011 text: 2011-May |
PublicationDecade | 2010 |
PublicationTitle | 2011 24th Canadian Conference on Electrical and Computer Engineering(CCECE) |
PublicationTitleAbbrev | CCECE |
PublicationYear | 2011 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0004864 ssj0000669182 |
Score | 1.5998881 |
Snippet | A proportional-integral-derivative (PID) controller is a generic feedback controller widely used in industrial control systems, process control, motor drive,... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 000337 |
SubjectTerms | Algorithm design and analysis AVR system Control systems Cost function Genetic algorithms Particle swarm optimization PID controller Tuning Voltage control |
Title | Optimal PID controller design for AVR system using particle swarm optimization algorithm |
URI | https://ieeexplore.ieee.org/document/6030468 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JT8JAFH4BTnpxAeOeOXi0MIV2mDmaCkETlBgx3MhsRWKhpJaY-Oud6QJqPHjr9DBtZ176lvm-7wFcecqEFRyHDg67xPEE8R0qtHC4VJT4HYmptoni8IEMxt79xJ9U4HrDhdFaZ-Az3bSX2Vm-iuXalspaJDvHo1WoGjPLuVqbeopxncylW-koj-bSUdQi5rqUlaQukzVRr9R6KsZuyabBrBUEvaCXS3sWj_vRdyVzO_09GJYvnKNN3prrVDTl5y8tx_9-0T40tgQ_NNq4rgOo6OUh7H7TJqzD5NH8TBY8QqO7W1QA2iOdIJVBPpCJddHNyxPKlaCRhc_P0KqwQ_T-wZMFiu0MBc8T8WgWJ_P0ddGAcb_3HAycog2DMzexReqottkyztqYctklUmoz4IpZym3IlJXn4V7oKy7Ctgn3OFZEmrRD-kpRV2OpO0dQW8ZLfQyIc7djNSGpYsK2ujZ7RDyTlGomhC85PoG6XaPpKlfamBbLc_r37TPYySu8Fn54DrU0WesLEyKk4jKzjS_5nLUN |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LT8IwHG4QD-rFBxjf9uDRQYGutEczIaCAxIDhRvoaEoGROWLiX2-7B6jx4G3dod3apr9Hv-_7AXCDlXErOPId5NeJgwVxHSq0cLhUlLg1iai2gWK3R1pD_DByRzlwu-bCaK1j8Jku2cf4Ll8FcmVTZWUS3-PRLbBt7D52E7bWOqNijCer0I14FKaJeBS1mLk6ZRmty8RNFGdqT2m7kvFpECt7XsNrJOKe6YA_Kq_Ehqe5D7rZJyd4k7fSKhIl-flLzfG__3QAihuKH-yvjdchyOnFEdj7pk5YAKMnc5zM-Qz22_cwhbTPdAhVDPqAxtuFdy_PMNGChhZAP4HLdCfC9w8ezmFge0iZnpDPJkE4jV7nRTBsNgZey0kLMThT411EjqqaReOsiiiXdSKlNg2umCXd-kxZgR6OfVdx4VeNw8eRItIEHtJVilY0krp2DPKLYKFPAOS8UrOqkFQxYYtdmzUi2ISlmgnhSo5OQcHO0XiZaG2M0-k5-_v1NdhpDbqdcafdezwHu0m-14IRL0A-Clf60jgMkbiK98kXqcu4Wg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2011+24th+Canadian+Conference+on+Electrical+and+Computer+Engineering%28CCECE%29&rft.atitle=Optimal+PID+controller+design+for+AVR+system+using+particle+swarm+optimization+algorithm&rft.au=Rahimian%2C+Mohammad+Sadegh&rft.au=Raahemifar%2C+Kaamran&rft.date=2011-05-01&rft.pub=IEEE&rft.isbn=9781424497881&rft.issn=0840-7789&rft.spage=000337&rft.epage=000340&rft_id=info:doi/10.1109%2FCCECE.2011.6030468&rft.externalDocID=6030468 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0840-7789&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0840-7789&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0840-7789&client=summon |