Adaptive control of nonlinear system using neuro-fuzzy learning by PSO algorithm
This paper proposes the optimization of parameters of neuro-fuzzy system using the particle swarm optimization. Neuro-fuzzy techniques have emerged from the fusion of neural networks and fuzzy inference systems. They could serve as a powerful tool for system modeling and control. These fuzzy systems...
Saved in:
Published in | 2012 16th IEEE Mediterranean Electrotechnical Conference pp. 519 - 523 |
---|---|
Main Authors | , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.03.2012
|
Subjects | |
Online Access | Get full text |
ISBN | 9781467307826 1467307823 |
ISSN | 2158-8473 |
DOI | 10.1109/MELCON.2012.6196486 |
Cover
Abstract | This paper proposes the optimization of parameters of neuro-fuzzy system using the particle swarm optimization. Neuro-fuzzy techniques have emerged from the fusion of neural networks and fuzzy inference systems. They could serve as a powerful tool for system modeling and control. These fuzzy systems are optimized by adapting the antecedent and consequent parameters. Among them, the ANFIS use the least square to optimize the consequent parameters and retropropagation to train the antecedent parameters. Several learning algorithms of fuzzy models have been proposed, e.g. evolutionary algorithms, such as particle swarm optimization. These different methods have been developed to learn the parameters of neuro-fuzzy system and to test them in the on-line control of nonlinear system. |
---|---|
AbstractList | This paper proposes the optimization of parameters of neuro-fuzzy system using the particle swarm optimization. Neuro-fuzzy techniques have emerged from the fusion of neural networks and fuzzy inference systems. They could serve as a powerful tool for system modeling and control. These fuzzy systems are optimized by adapting the antecedent and consequent parameters. Among them, the ANFIS use the least square to optimize the consequent parameters and retropropagation to train the antecedent parameters. Several learning algorithms of fuzzy models have been proposed, e.g. evolutionary algorithms, such as particle swarm optimization. These different methods have been developed to learn the parameters of neuro-fuzzy system and to test them in the on-line control of nonlinear system. |
Author | Bouzaida, S. M'Sahli, F. Turki, M. Sakly, A. |
Author_xml | – sequence: 1 givenname: M. surname: Turki fullname: Turki, M. email: mouradessturki@yahoo.fr organization: Res. Unit Etude des Syst. Ind. et Energies Renouvelables, Nat. Sch. of Eng. of Monastir, Monastir, Tunisia – sequence: 2 givenname: S. surname: Bouzaida fullname: Bouzaida, S. email: bouzaida_sana@hotmail.fr organization: Res. Unit Etude des Syst. Ind. et Energies Renouvelables, Nat. Sch. of Eng. of Monastir, Monastir, Tunisia – sequence: 3 givenname: A. surname: Sakly fullname: Sakly, A. email: sakly_anis@yahoo.fr organization: Res. Unit Etude des Syst. Ind. et Energies Renouvelables, Nat. Sch. of Eng. of Monastir, Monastir, Tunisia – sequence: 4 givenname: F. surname: M'Sahli fullname: M'Sahli, F. email: faouzi.msahli@enim.rnu.tn organization: Res. Unit Etude des Syst. Ind. et Energies Renouvelables, Nat. Sch. of Eng. of Monastir, Monastir, Tunisia |
BookMark | eNo1kNtKw0AYhFesYFv7BL3ZF0jcfzfZw2Up9QDRFtTrssn-qSvJpuQgpE9vxXo1zAx8AzMjk9AEJGQJLAZg5v5lk623rzFnwGMJRiZaXpEZJFIJprSAa7IwSv97LidkyiHVkU6UuCWLrvtijJ1B0oh0SnYrZ4-9_0ZaNKFvm4o2JT0vVj6gbWk3dj3WdOh8ONCAQ9tE5XA6jbQ6t-E3zEe6e9tSWx2a1vef9R25KW3V4eKic_LxsHlfP0XZ9vF5vcoiDyrtIwcsL1CDLvNEAnO2EJJhwazQNjeojUuNgsRoxjlyo5zLjbCQl6I0PFVOzMnyj-sRcX9sfW3bcX85RPwA3sZVMw |
ContentType | Conference Proceeding |
DBID | 6IE 6IH CBEJK RIE RIO |
DOI | 10.1109/MELCON.2012.6196486 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISBN | 1467307831 9781467307833 9781467307840 146730784X |
EndPage | 523 |
ExternalDocumentID | 6196486 |
Genre | orig-research |
GroupedDBID | 6IE 6IF 6IH 6IK 6IL 6IM 6IN AAJGR AAWTH ABLEC ACGFS ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IJVOP IPLJI M43 OCL RIE RIL RIO |
ID | FETCH-LOGICAL-i175t-d10bce818fb4610dac360ec0a38ab9e89d5971498022e297ddb93a1bf3f9257d3 |
IEDL.DBID | RIE |
ISBN | 9781467307826 1467307823 |
ISSN | 2158-8473 |
IngestDate | Wed Aug 27 04:15:20 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i175t-d10bce818fb4610dac360ec0a38ab9e89d5971498022e297ddb93a1bf3f9257d3 |
PageCount | 5 |
ParticipantIDs | ieee_primary_6196486 |
PublicationCentury | 2000 |
PublicationDate | 2012-March |
PublicationDateYYYYMMDD | 2012-03-01 |
PublicationDate_xml | – month: 03 year: 2012 text: 2012-March |
PublicationDecade | 2010 |
PublicationTitle | 2012 16th IEEE Mediterranean Electrotechnical Conference |
PublicationTitleAbbrev | MELCON |
PublicationYear | 2012 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0001096935 ssj0000703062 |
Score | 1.548192 |
Snippet | This paper proposes the optimization of parameters of neuro-fuzzy system using the particle swarm optimization. Neuro-fuzzy techniques have emerged from the... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 519 |
SubjectTerms | Adaptation models Control systems Inference algorithms Inverse problems Mathematical model Particle swarm optimization Training |
Title | Adaptive control of nonlinear system using neuro-fuzzy learning by PSO algorithm |
URI | https://ieeexplore.ieee.org/document/6196486 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8JAEN4AJ09qwPjOHjza0nbLtns0BEKMPBIl4Ub2MUWiAiHtAX69s9uK0Xjw1jZput1O95uZ_eYbQu50AB3GBXgQB8qLjVReyixHjIUKGE-SEGxqYDjig2n8OOvMauT-UAsDAI58Br49dHv5Zq0Lmyprc6selfI6qaOZlbVah3yKM91K-s7lV9A3F66_JoJa6uEizFxdF0eTRlRkX3JP1TmvFInwtvaw99QdjyztK_KrR_7oveKgp39Mhl-DLhknb36RK1_vf-k5_vetTkjru8iPTg7wdUpqsGqSyYORG7sC0orDTtcZXZVyGnJLS91nasnyC-qkML2s2O93tGo-saBqRyfPYyrfF-vtMn_9aJFpv_fSHXhV0wVviZ5E7pkwUBoQxjNlpdiN1IwHoAPJUqkEpMJgCIJhlS3RhUgkxijBZKgylgn8_Q07Iw0cFpwTKjHwTnQcIE6KGMJQYCzHI51EQSdlGZgL0rSzMd-UuhrzaiIu_758RY7sFyn5X9ekkW8LuEGHIFe3zhI-AdzYrSk |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT8JAEN0oHvSkBozf7sGjLS1btt2jIRBUCiRCwo3sdqdIVCCkHODXO7stGI0Hb22TptvtZN7M9M0bQu4TD-qMC3Ag8JQTaKmciBmOGPMVMB6GPpjSQNzl7WHwPKqP9sjDrhcGACz5DFxzaP_l63myMqWyKjfqURHfJweI-0E979baVVSs8Rbid7bCgtG5sBM2EdYiB90ws51dHI0acZFtBZ-Kc15oEuFt1bjZafS6hvhVc4uH_pi-YsGndUzi7bJzzsm7u8qUm2x-KTr-971OSOW7zY_2dwB2SvZgVib9Ry0XxgfSgsVO5ymd5YIacklz5Wdq6PITasUwnXS12axpMX5iQtWa9l97VH5M5stp9vZZIcNWc9BoO8XYBWeKsUTmaN9TCSCQp8qIsWuZMO5B4kkWSSUgEhqTEEysTJMu1ESotRJM-iplqUAHoNkZKeGy4JxQial3mAQeIqUIwPcFZnO8loQ1rx6xFPQFKZvdGC9yZY1xsRGXf1--I4ftQdwZd566L1fkyHydnA12TUrZcgU3GB5k6tZaxRcmsbB2 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2012+16th+IEEE+Mediterranean+Electrotechnical+Conference&rft.atitle=Adaptive+control+of+nonlinear+system+using+neuro-fuzzy+learning+by+PSO+algorithm&rft.au=Turki%2C+M.&rft.au=Bouzaida%2C+S.&rft.au=Sakly%2C+A.&rft.au=M%27Sahli%2C+F.&rft.date=2012-03-01&rft.pub=IEEE&rft.isbn=9781467307826&rft.issn=2158-8473&rft.spage=519&rft.epage=523&rft_id=info:doi/10.1109%2FMELCON.2012.6196486&rft.externalDocID=6196486 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2158-8473&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2158-8473&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2158-8473&client=summon |