Adaptive control of nonlinear system using neuro-fuzzy learning by PSO algorithm

This paper proposes the optimization of parameters of neuro-fuzzy system using the particle swarm optimization. Neuro-fuzzy techniques have emerged from the fusion of neural networks and fuzzy inference systems. They could serve as a powerful tool for system modeling and control. These fuzzy systems...

Full description

Saved in:
Bibliographic Details
Published in2012 16th IEEE Mediterranean Electrotechnical Conference pp. 519 - 523
Main Authors Turki, M., Bouzaida, S., Sakly, A., M'Sahli, F.
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.03.2012
Subjects
Online AccessGet full text
ISBN9781467307826
1467307823
ISSN2158-8473
DOI10.1109/MELCON.2012.6196486

Cover

Abstract This paper proposes the optimization of parameters of neuro-fuzzy system using the particle swarm optimization. Neuro-fuzzy techniques have emerged from the fusion of neural networks and fuzzy inference systems. They could serve as a powerful tool for system modeling and control. These fuzzy systems are optimized by adapting the antecedent and consequent parameters. Among them, the ANFIS use the least square to optimize the consequent parameters and retropropagation to train the antecedent parameters. Several learning algorithms of fuzzy models have been proposed, e.g. evolutionary algorithms, such as particle swarm optimization. These different methods have been developed to learn the parameters of neuro-fuzzy system and to test them in the on-line control of nonlinear system.
AbstractList This paper proposes the optimization of parameters of neuro-fuzzy system using the particle swarm optimization. Neuro-fuzzy techniques have emerged from the fusion of neural networks and fuzzy inference systems. They could serve as a powerful tool for system modeling and control. These fuzzy systems are optimized by adapting the antecedent and consequent parameters. Among them, the ANFIS use the least square to optimize the consequent parameters and retropropagation to train the antecedent parameters. Several learning algorithms of fuzzy models have been proposed, e.g. evolutionary algorithms, such as particle swarm optimization. These different methods have been developed to learn the parameters of neuro-fuzzy system and to test them in the on-line control of nonlinear system.
Author Bouzaida, S.
M'Sahli, F.
Turki, M.
Sakly, A.
Author_xml – sequence: 1
  givenname: M.
  surname: Turki
  fullname: Turki, M.
  email: mouradessturki@yahoo.fr
  organization: Res. Unit Etude des Syst. Ind. et Energies Renouvelables, Nat. Sch. of Eng. of Monastir, Monastir, Tunisia
– sequence: 2
  givenname: S.
  surname: Bouzaida
  fullname: Bouzaida, S.
  email: bouzaida_sana@hotmail.fr
  organization: Res. Unit Etude des Syst. Ind. et Energies Renouvelables, Nat. Sch. of Eng. of Monastir, Monastir, Tunisia
– sequence: 3
  givenname: A.
  surname: Sakly
  fullname: Sakly, A.
  email: sakly_anis@yahoo.fr
  organization: Res. Unit Etude des Syst. Ind. et Energies Renouvelables, Nat. Sch. of Eng. of Monastir, Monastir, Tunisia
– sequence: 4
  givenname: F.
  surname: M'Sahli
  fullname: M'Sahli, F.
  email: faouzi.msahli@enim.rnu.tn
  organization: Res. Unit Etude des Syst. Ind. et Energies Renouvelables, Nat. Sch. of Eng. of Monastir, Monastir, Tunisia
BookMark eNo1kNtKw0AYhFesYFv7BL3ZF0jcfzfZw2Up9QDRFtTrssn-qSvJpuQgpE9vxXo1zAx8AzMjk9AEJGQJLAZg5v5lk623rzFnwGMJRiZaXpEZJFIJprSAa7IwSv97LidkyiHVkU6UuCWLrvtijJ1B0oh0SnYrZ4-9_0ZaNKFvm4o2JT0vVj6gbWk3dj3WdOh8ONCAQ9tE5XA6jbQ6t-E3zEe6e9tSWx2a1vef9R25KW3V4eKic_LxsHlfP0XZ9vF5vcoiDyrtIwcsL1CDLvNEAnO2EJJhwazQNjeojUuNgsRoxjlyo5zLjbCQl6I0PFVOzMnyj-sRcX9sfW3bcX85RPwA3sZVMw
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/MELCON.2012.6196486
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 1467307831
9781467307833
9781467307840
146730784X
EndPage 523
ExternalDocumentID 6196486
Genre orig-research
GroupedDBID 6IE
6IF
6IH
6IK
6IL
6IM
6IN
AAJGR
AAWTH
ABLEC
ACGFS
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IJVOP
IPLJI
M43
OCL
RIE
RIL
RIO
ID FETCH-LOGICAL-i175t-d10bce818fb4610dac360ec0a38ab9e89d5971498022e297ddb93a1bf3f9257d3
IEDL.DBID RIE
ISBN 9781467307826
1467307823
ISSN 2158-8473
IngestDate Wed Aug 27 04:15:20 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-d10bce818fb4610dac360ec0a38ab9e89d5971498022e297ddb93a1bf3f9257d3
PageCount 5
ParticipantIDs ieee_primary_6196486
PublicationCentury 2000
PublicationDate 2012-March
PublicationDateYYYYMMDD 2012-03-01
PublicationDate_xml – month: 03
  year: 2012
  text: 2012-March
PublicationDecade 2010
PublicationTitle 2012 16th IEEE Mediterranean Electrotechnical Conference
PublicationTitleAbbrev MELCON
PublicationYear 2012
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0001096935
ssj0000703062
Score 1.548192
Snippet This paper proposes the optimization of parameters of neuro-fuzzy system using the particle swarm optimization. Neuro-fuzzy techniques have emerged from the...
SourceID ieee
SourceType Publisher
StartPage 519
SubjectTerms Adaptation models
Control systems
Inference algorithms
Inverse problems
Mathematical model
Particle swarm optimization
Training
Title Adaptive control of nonlinear system using neuro-fuzzy learning by PSO algorithm
URI https://ieeexplore.ieee.org/document/6196486
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8JAEN4AJ09qwPjOHjza0nbLtns0BEKMPBIl4Ub2MUWiAiHtAX69s9uK0Xjw1jZput1O95uZ_eYbQu50AB3GBXgQB8qLjVReyixHjIUKGE-SEGxqYDjig2n8OOvMauT-UAsDAI58Br49dHv5Zq0Lmyprc6selfI6qaOZlbVah3yKM91K-s7lV9A3F66_JoJa6uEizFxdF0eTRlRkX3JP1TmvFInwtvaw99QdjyztK_KrR_7oveKgp39Mhl-DLhknb36RK1_vf-k5_vetTkjru8iPTg7wdUpqsGqSyYORG7sC0orDTtcZXZVyGnJLS91nasnyC-qkML2s2O93tGo-saBqRyfPYyrfF-vtMn_9aJFpv_fSHXhV0wVviZ5E7pkwUBoQxjNlpdiN1IwHoAPJUqkEpMJgCIJhlS3RhUgkxijBZKgylgn8_Q07Iw0cFpwTKjHwTnQcIE6KGMJQYCzHI51EQSdlGZgL0rSzMd-UuhrzaiIu_758RY7sFyn5X9ekkW8LuEGHIFe3zhI-AdzYrSk
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT8JAEN0oHvSkBozf7sGjLS1btt2jIRBUCiRCwo3sdqdIVCCkHODXO7stGI0Hb22TptvtZN7M9M0bQu4TD-qMC3Ag8JQTaKmciBmOGPMVMB6GPpjSQNzl7WHwPKqP9sjDrhcGACz5DFxzaP_l63myMqWyKjfqURHfJweI-0E979baVVSs8Rbid7bCgtG5sBM2EdYiB90ws51dHI0acZFtBZ-Kc15oEuFt1bjZafS6hvhVc4uH_pi-YsGndUzi7bJzzsm7u8qUm2x-KTr-971OSOW7zY_2dwB2SvZgVib9Ry0XxgfSgsVO5ymd5YIacklz5Wdq6PITasUwnXS12axpMX5iQtWa9l97VH5M5stp9vZZIcNWc9BoO8XYBWeKsUTmaN9TCSCQp8qIsWuZMO5B4kkWSSUgEhqTEEysTJMu1ESotRJM-iplqUAHoNkZKeGy4JxQial3mAQeIqUIwPcFZnO8loQ1rx6xFPQFKZvdGC9yZY1xsRGXf1--I4ftQdwZd566L1fkyHydnA12TUrZcgU3GB5k6tZaxRcmsbB2
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2012+16th+IEEE+Mediterranean+Electrotechnical+Conference&rft.atitle=Adaptive+control+of+nonlinear+system+using+neuro-fuzzy+learning+by+PSO+algorithm&rft.au=Turki%2C+M.&rft.au=Bouzaida%2C+S.&rft.au=Sakly%2C+A.&rft.au=M%27Sahli%2C+F.&rft.date=2012-03-01&rft.pub=IEEE&rft.isbn=9781467307826&rft.issn=2158-8473&rft.spage=519&rft.epage=523&rft_id=info:doi/10.1109%2FMELCON.2012.6196486&rft.externalDocID=6196486
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2158-8473&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2158-8473&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2158-8473&client=summon