An improved neural network based fuzzy self-adaptive KALMAN filter and its application in cone picking robot

Aimed to improve the working efficiency of cone picking robot and release workers from heavy manual labor, a novel RBF neural network based fuzzy self-adaptive Kalman filter is presented in the paper. The position and object input voltage are taken as the inputs of the RBF neural network model. Cons...

Full description

Saved in:
Bibliographic Details
Published in2009 International Conference on Machine Learning and Cybernetics Vol. 1; pp. 573 - 577
Main Authors Xiu-Rong Guo, Feng-Hu Wang, Dan-Feng Du, Xiu-Li Guo
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.07.2009
Subjects
Online AccessGet full text
ISBN9781424437023
1424437024
ISSN2160-133X
DOI10.1109/ICMLC.2009.5212508

Cover

Loading…
Abstract Aimed to improve the working efficiency of cone picking robot and release workers from heavy manual labor, a novel RBF neural network based fuzzy self-adaptive Kalman filter is presented in the paper. The position and object input voltage are taken as the inputs of the RBF neural network model. Consider that the traditional BP algorithm has shortcomings of converging slowly and easily trapping a local minimum value, a combination learning algorithm using fuzzy self-adaptive Kalman filter is adopted to train the neural network. The sample data obtained from the 3D laser scanner and sensors located on the cone picking robot. Experimental results show that it will enable the training process with an overall accuracy and rapid convergence speed. The application of the technology in cone picking robot automatic control system proves it is an effective method and has certain project value.
AbstractList Aimed to improve the working efficiency of cone picking robot and release workers from heavy manual labor, a novel RBF neural network based fuzzy self-adaptive Kalman filter is presented in the paper. The position and object input voltage are taken as the inputs of the RBF neural network model. Consider that the traditional BP algorithm has shortcomings of converging slowly and easily trapping a local minimum value, a combination learning algorithm using fuzzy self-adaptive Kalman filter is adopted to train the neural network. The sample data obtained from the 3D laser scanner and sensors located on the cone picking robot. Experimental results show that it will enable the training process with an overall accuracy and rapid convergence speed. The application of the technology in cone picking robot automatic control system proves it is an effective method and has certain project value.
Author Xiu-Rong Guo
Feng-Hu Wang
Dan-Feng Du
Xiu-Li Guo
Author_xml – sequence: 1
  surname: Xiu-Rong Guo
  fullname: Xiu-Rong Guo
  organization: Coll. of Mech. & Electr. Eng., Northeast Forestry Univ., Harbin, China
– sequence: 2
  surname: Feng-Hu Wang
  fullname: Feng-Hu Wang
  organization: Coll. of Mech. & Electr. Eng., Northeast Forestry Univ., Harbin, China
– sequence: 3
  surname: Dan-Feng Du
  fullname: Dan-Feng Du
  organization: Coll. of Mech. & Electr. Eng., Northeast Forestry Univ., Harbin, China
– sequence: 4
  surname: Xiu-Li Guo
  fullname: Xiu-Li Guo
  organization: Coll. of Mech. & Electr. Eng., Northeast Forestry Univ., Harbin, China
BookMark eNo1UF9PwjAcrBESAfkC-tIvMOyvf-j2uCyKxKEvmvhG2rU1lbEtXcHAp3eJeC-Xu-QuuZuiUdM2FqE7IAsAkj2si01ZLCgh2UJQoIKkV2gKnHLOJGH0Gs0zmf5rykZoQmFJEmDsc4ymQy7NADJBb9C877_JAC6oXLIJqvMG-30X2qM1uLGHoOqB4k8bdlirfjDd4Xw-4d7WLlFGddEfLX7Jy03-ip2vow1YNQb72GPVdbWvVPTt0NngatiAO1_tfPOFQ6vbeIvGTtW9nV94hj6eHt-L56R8W62LvEw8SBGTyjnGFVNAUylAM5oZTagm1ikmU8O5AqGF5NLJylBgZBirwWprltZkirMZuv_r9dbabRf8XoXT9vIc-wXeBGBp
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICMLC.2009.5212508
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE/IET Electronic Library
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Forestry
Computer Science
EISBN 1424437032
9781424437030
EndPage 577
ExternalDocumentID 5212508
Genre orig-research
GroupedDBID 6IE
6IF
6IH
6IK
6IL
6IM
6IN
AAJGR
AAWTH
ACGFS
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IPLJI
M43
OCL
RIE
RIL
ID FETCH-LOGICAL-i175t-cff34a3a128751b329db02b0efa378d44a15b5747f7cd2130216b1ebed6ed9a43
IEDL.DBID RIE
ISBN 9781424437023
1424437024
ISSN 2160-133X
IngestDate Wed Aug 27 02:21:16 EDT 2025
IsPeerReviewed false
IsScholarly false
LCCN 2008911952
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-cff34a3a128751b329db02b0efa378d44a15b5747f7cd2130216b1ebed6ed9a43
PageCount 5
ParticipantIDs ieee_primary_5212508
PublicationCentury 2000
PublicationDate 2009-July
PublicationDateYYYYMMDD 2009-07-01
PublicationDate_xml – month: 07
  year: 2009
  text: 2009-July
PublicationDecade 2000
PublicationTitle 2009 International Conference on Machine Learning and Cybernetics
PublicationTitleAbbrev ICMLC
PublicationYear 2009
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0000452763
ssj0000744891
Score 1.4363048
Snippet Aimed to improve the working efficiency of cone picking robot and release workers from heavy manual labor, a novel RBF neural network based fuzzy self-adaptive...
SourceID ieee
SourceType Publisher
StartPage 573
SubjectTerms Automatic control
Cone picking robot
Control systems
Cybernetics
Forestry
Fuzzy neural networks
Fuzzy self-adaptive KALMAN filter
Hydraulic drive
Machine learning
Manipulators
Neural networks
RBFNN (radial basis function neural network) controller
Robotics and automation
Service robots
Title An improved neural network based fuzzy self-adaptive KALMAN filter and its application in cone picking robot
URI https://ieeexplore.ieee.org/document/5212508
Volume 1
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV27bsIwFLUoQ9WJFqj61h06NpCHE5MRoSLaEtShSGzIiW0pKgoIkqF8fa-dhD7UoVPiZHDsOLk-93EOIffC9gVNbN_iyqYWDRGgcBebTKEtFImvqFFRiGbBZE6fF_6iQR4OtTBSSpN8Jnv61MTyxToptKusr-tMfV3Ze4TArazVOvhTNDU4q6ikTJsh8DCCea4T2BZCsUVd1-UxNEw13VPV9uqCGjvsP42i6aiksqx6_CG9YizPuEWi-pnLhJP3XpHHvWT_i87xv4M6Jd2vGj94PVivM9KQWZu0apEHqL75NjnW4p1aEa5DVsMMUuOEkAI0ESZf4cGkkYO2hgJUsd9_wE6ulMUF3-hfKbwMp9FwBirVcXngmYA038G3wDmkGSAql7BJE-24h-06XuddMh8_vo0mVqXWYKW4BcmtRCmPco-jwWO-E3tuKGLbjW2puMcGglLu-LGP6EWxRLg6XuoEsYNrSARShJx656SZYWcXBDyErXhjwCS-HYQ83JFhIoRLGQ_FIGCXpKPncbkpCTmW1RRe_X35mpyUISCdY3tDmvm2kLe4k8jjO7OEPgHmUsCq
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELYqkIAJKEW8uYGRtHnYcTNWFailTcUAUrfKiW0pokqrkg7013N2kvIQA1PiZHDsODl_d_d9R8iddJmkqcscoV3q0AgBivCxyTXaQpkyTW0VhXgSDl7p05RNG-R-y4VRStnkM9U2pzaWLxfp2rjKOoZnygyzd5cZMm7J1tp6VIw4OK_EpGybI_SwJfN8L3QdBGPTmtkVcDRNteBT1Q5qSo0bdYb9eNwvxSyrPn8UX7G25_GQxPVTlyknb-11kbTTzS9Bx_8O64i0vlh-8Ly1X8ekofImOazLPED11TfJninfaWrCnZB5L4fMuiGUBCOFKeZ4sInkYOyhBL3ebD7gXc21I6RYmp8pjHrjuDcBnZnIPIhcQla8w7fQOWQ5IC5XsMxS47qH1SJZFC3y-vjw0h84Vb0GJ8NNSOGkWgdUBAJNHmdeEviRTFw_cZUWAe9KSoXHEob4RfNU-iZi6oWJh6tIhkpGgganZCfHzs4IBAhc8UaXK3w7CHqEp6JUSp9yEcluyM_JiZnH2bKU5JhVU3jx9-Vbsj94icez8XAyuiQHZUDIZNxekZ1itVbXuK8okhu7nD4BI7TD8g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2009+International+Conference+on+Machine+Learning+and+Cybernetics&rft.atitle=An+improved+neural+network+based+fuzzy+self-adaptive+KALMAN+filter+and+its+application+in+cone+picking+robot&rft.au=Xiu-Rong+Guo&rft.au=Feng-Hu+Wang&rft.au=Dan-Feng+Du&rft.au=Xiu-Li+Guo&rft.date=2009-07-01&rft.pub=IEEE&rft.isbn=9781424437023&rft.issn=2160-133X&rft.volume=1&rft.spage=573&rft.epage=577&rft_id=info:doi/10.1109%2FICMLC.2009.5212508&rft.externalDocID=5212508
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2160-133X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2160-133X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2160-133X&client=summon