An improved neural network based fuzzy self-adaptive KALMAN filter and its application in cone picking robot
Aimed to improve the working efficiency of cone picking robot and release workers from heavy manual labor, a novel RBF neural network based fuzzy self-adaptive Kalman filter is presented in the paper. The position and object input voltage are taken as the inputs of the RBF neural network model. Cons...
Saved in:
Published in | 2009 International Conference on Machine Learning and Cybernetics Vol. 1; pp. 573 - 577 |
---|---|
Main Authors | , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.07.2009
|
Subjects | |
Online Access | Get full text |
ISBN | 9781424437023 1424437024 |
ISSN | 2160-133X |
DOI | 10.1109/ICMLC.2009.5212508 |
Cover
Loading…
Abstract | Aimed to improve the working efficiency of cone picking robot and release workers from heavy manual labor, a novel RBF neural network based fuzzy self-adaptive Kalman filter is presented in the paper. The position and object input voltage are taken as the inputs of the RBF neural network model. Consider that the traditional BP algorithm has shortcomings of converging slowly and easily trapping a local minimum value, a combination learning algorithm using fuzzy self-adaptive Kalman filter is adopted to train the neural network. The sample data obtained from the 3D laser scanner and sensors located on the cone picking robot. Experimental results show that it will enable the training process with an overall accuracy and rapid convergence speed. The application of the technology in cone picking robot automatic control system proves it is an effective method and has certain project value. |
---|---|
AbstractList | Aimed to improve the working efficiency of cone picking robot and release workers from heavy manual labor, a novel RBF neural network based fuzzy self-adaptive Kalman filter is presented in the paper. The position and object input voltage are taken as the inputs of the RBF neural network model. Consider that the traditional BP algorithm has shortcomings of converging slowly and easily trapping a local minimum value, a combination learning algorithm using fuzzy self-adaptive Kalman filter is adopted to train the neural network. The sample data obtained from the 3D laser scanner and sensors located on the cone picking robot. Experimental results show that it will enable the training process with an overall accuracy and rapid convergence speed. The application of the technology in cone picking robot automatic control system proves it is an effective method and has certain project value. |
Author | Xiu-Rong Guo Feng-Hu Wang Dan-Feng Du Xiu-Li Guo |
Author_xml | – sequence: 1 surname: Xiu-Rong Guo fullname: Xiu-Rong Guo organization: Coll. of Mech. & Electr. Eng., Northeast Forestry Univ., Harbin, China – sequence: 2 surname: Feng-Hu Wang fullname: Feng-Hu Wang organization: Coll. of Mech. & Electr. Eng., Northeast Forestry Univ., Harbin, China – sequence: 3 surname: Dan-Feng Du fullname: Dan-Feng Du organization: Coll. of Mech. & Electr. Eng., Northeast Forestry Univ., Harbin, China – sequence: 4 surname: Xiu-Li Guo fullname: Xiu-Li Guo organization: Coll. of Mech. & Electr. Eng., Northeast Forestry Univ., Harbin, China |
BookMark | eNo1UF9PwjAcrBESAfkC-tIvMOyvf-j2uCyKxKEvmvhG2rU1lbEtXcHAp3eJeC-Xu-QuuZuiUdM2FqE7IAsAkj2si01ZLCgh2UJQoIKkV2gKnHLOJGH0Gs0zmf5rykZoQmFJEmDsc4ymQy7NADJBb9C877_JAC6oXLIJqvMG-30X2qM1uLGHoOqB4k8bdlirfjDd4Xw-4d7WLlFGddEfLX7Jy03-ip2vow1YNQb72GPVdbWvVPTt0NngatiAO1_tfPOFQ6vbeIvGTtW9nV94hj6eHt-L56R8W62LvEw8SBGTyjnGFVNAUylAM5oZTagm1ikmU8O5AqGF5NLJylBgZBirwWprltZkirMZuv_r9dbabRf8XoXT9vIc-wXeBGBp |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/ICMLC.2009.5212508 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE/IET Electronic Library IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Forestry Computer Science |
EISBN | 1424437032 9781424437030 |
EndPage | 577 |
ExternalDocumentID | 5212508 |
Genre | orig-research |
GroupedDBID | 6IE 6IF 6IH 6IK 6IL 6IM 6IN AAJGR AAWTH ACGFS ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IPLJI M43 OCL RIE RIL |
ID | FETCH-LOGICAL-i175t-cff34a3a128751b329db02b0efa378d44a15b5747f7cd2130216b1ebed6ed9a43 |
IEDL.DBID | RIE |
ISBN | 9781424437023 1424437024 |
ISSN | 2160-133X |
IngestDate | Wed Aug 27 02:21:16 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | false |
LCCN | 2008911952 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i175t-cff34a3a128751b329db02b0efa378d44a15b5747f7cd2130216b1ebed6ed9a43 |
PageCount | 5 |
ParticipantIDs | ieee_primary_5212508 |
PublicationCentury | 2000 |
PublicationDate | 2009-July |
PublicationDateYYYYMMDD | 2009-07-01 |
PublicationDate_xml | – month: 07 year: 2009 text: 2009-July |
PublicationDecade | 2000 |
PublicationTitle | 2009 International Conference on Machine Learning and Cybernetics |
PublicationTitleAbbrev | ICMLC |
PublicationYear | 2009 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0000452763 ssj0000744891 |
Score | 1.4363048 |
Snippet | Aimed to improve the working efficiency of cone picking robot and release workers from heavy manual labor, a novel RBF neural network based fuzzy self-adaptive... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 573 |
SubjectTerms | Automatic control Cone picking robot Control systems Cybernetics Forestry Fuzzy neural networks Fuzzy self-adaptive KALMAN filter Hydraulic drive Machine learning Manipulators Neural networks RBFNN (radial basis function neural network) controller Robotics and automation Service robots |
Title | An improved neural network based fuzzy self-adaptive KALMAN filter and its application in cone picking robot |
URI | https://ieeexplore.ieee.org/document/5212508 |
Volume | 1 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV27bsIwFLUoQ9WJFqj61h06NpCHE5MRoSLaEtShSGzIiW0pKgoIkqF8fa-dhD7UoVPiZHDsOLk-93EOIffC9gVNbN_iyqYWDRGgcBebTKEtFImvqFFRiGbBZE6fF_6iQR4OtTBSSpN8Jnv61MTyxToptKusr-tMfV3Ze4TArazVOvhTNDU4q6ikTJsh8DCCea4T2BZCsUVd1-UxNEw13VPV9uqCGjvsP42i6aiksqx6_CG9YizPuEWi-pnLhJP3XpHHvWT_i87xv4M6Jd2vGj94PVivM9KQWZu0apEHqL75NjnW4p1aEa5DVsMMUuOEkAI0ESZf4cGkkYO2hgJUsd9_wE6ulMUF3-hfKbwMp9FwBirVcXngmYA038G3wDmkGSAql7BJE-24h-06XuddMh8_vo0mVqXWYKW4BcmtRCmPco-jwWO-E3tuKGLbjW2puMcGglLu-LGP6EWxRLg6XuoEsYNrSARShJx656SZYWcXBDyErXhjwCS-HYQ83JFhIoRLGQ_FIGCXpKPncbkpCTmW1RRe_X35mpyUISCdY3tDmvm2kLe4k8jjO7OEPgHmUsCq |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELYqkIAJKEW8uYGRtHnYcTNWFailTcUAUrfKiW0pokqrkg7013N2kvIQA1PiZHDsODl_d_d9R8iddJmkqcscoV3q0AgBivCxyTXaQpkyTW0VhXgSDl7p05RNG-R-y4VRStnkM9U2pzaWLxfp2rjKOoZnygyzd5cZMm7J1tp6VIw4OK_EpGybI_SwJfN8L3QdBGPTmtkVcDRNteBT1Q5qSo0bdYb9eNwvxSyrPn8UX7G25_GQxPVTlyknb-11kbTTzS9Bx_8O64i0vlh-8Ly1X8ekofImOazLPED11TfJninfaWrCnZB5L4fMuiGUBCOFKeZ4sInkYOyhBL3ebD7gXc21I6RYmp8pjHrjuDcBnZnIPIhcQla8w7fQOWQ5IC5XsMxS47qH1SJZFC3y-vjw0h84Vb0GJ8NNSOGkWgdUBAJNHmdeEviRTFw_cZUWAe9KSoXHEob4RfNU-iZi6oWJh6tIhkpGgganZCfHzs4IBAhc8UaXK3w7CHqEp6JUSp9yEcluyM_JiZnH2bKU5JhVU3jx9-Vbsj94icez8XAyuiQHZUDIZNxekZ1itVbXuK8okhu7nD4BI7TD8g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2009+International+Conference+on+Machine+Learning+and+Cybernetics&rft.atitle=An+improved+neural+network+based+fuzzy+self-adaptive+KALMAN+filter+and+its+application+in+cone+picking+robot&rft.au=Xiu-Rong+Guo&rft.au=Feng-Hu+Wang&rft.au=Dan-Feng+Du&rft.au=Xiu-Li+Guo&rft.date=2009-07-01&rft.pub=IEEE&rft.isbn=9781424437023&rft.issn=2160-133X&rft.volume=1&rft.spage=573&rft.epage=577&rft_id=info:doi/10.1109%2FICMLC.2009.5212508&rft.externalDocID=5212508 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2160-133X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2160-133X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2160-133X&client=summon |