Towards Scalable Representations of Object Categories: Learning a Hierarchy of Parts
This paper proposes a novel approach to constructing a hierarchical representation of visual input that aims to enable recognition and detection of a large number of object categories. Inspired by the principles of efficient indexing (bottom-up,), robust matching (top-down,), and ideas of compositio...
Saved in:
Published in | 2007 IEEE Conference on Computer Vision and Pattern Recognition pp. 1 - 8 |
---|---|
Main Authors | , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.06.2007
|
Subjects | |
Online Access | Get full text |
ISBN | 9781424411795 1424411793 |
ISSN | 1063-6919 1063-6919 |
DOI | 10.1109/CVPR.2007.383269 |
Cover
Abstract | This paper proposes a novel approach to constructing a hierarchical representation of visual input that aims to enable recognition and detection of a large number of object categories. Inspired by the principles of efficient indexing (bottom-up,), robust matching (top-down,), and ideas of compositionality, our approach learns a hierarchy of spatially flexible compositions, i.e. parts, in an unsupervised, statistics-driven manner. Starting with simple, frequent features, we learn the statistically most significant compositions (parts composed of parts), which consequently define the next layer. Parts are learned sequentially, layer after layer, optimally adjusting to the visual data. Lower layers are learned in a category-independent way to obtain complex, yet sharable visual building blocks, which is a crucial step towards a scalable representation. Higher layers of the hierarchy, on the other hand, are constructed by using specific categories, achieving a category representation with a small number of highly generalizable parts that gained their structural flexibility through composition within the hierarchy. Built in this way, new categories can be efficiently and continuously added to the system by adding a small number of parts only in the higher layers. The approach is demonstrated on a large collection of images and a variety of object categories. Detection results confirm the effectiveness and robustness of the learned parts. |
---|---|
AbstractList | This paper proposes a novel approach to constructing a hierarchical representation of visual input that aims to enable recognition and detection of a large number of object categories. Inspired by the principles of efficient indexing (bottom-up,), robust matching (top-down,), and ideas of compositionality, our approach learns a hierarchy of spatially flexible compositions, i.e. parts, in an unsupervised, statistics-driven manner. Starting with simple, frequent features, we learn the statistically most significant compositions (parts composed of parts), which consequently define the next layer. Parts are learned sequentially, layer after layer, optimally adjusting to the visual data. Lower layers are learned in a category-independent way to obtain complex, yet sharable visual building blocks, which is a crucial step towards a scalable representation. Higher layers of the hierarchy, on the other hand, are constructed by using specific categories, achieving a category representation with a small number of highly generalizable parts that gained their structural flexibility through composition within the hierarchy. Built in this way, new categories can be efficiently and continuously added to the system by adding a small number of parts only in the higher layers. The approach is demonstrated on a large collection of images and a variety of object categories. Detection results confirm the effectiveness and robustness of the learned parts. |
Author | Fidler, S. Leonardis, A. |
Author_xml | – sequence: 1 givenname: S. surname: Fidler fullname: Fidler, S. organization: Univ. of Ljubljana, Ljubljana – sequence: 2 givenname: A. surname: Leonardis fullname: Leonardis, A. organization: Univ. of Ljubljana, Ljubljana |
BookMark | eNpNjE1PAjEURatiIiB7Ezf9A4P9nLbuzETFhASC6Ja8zrxiCc6QdhLDv1cjC-_mLs65d0QGbdciITecTTln7q56X66mgjEzlVaK0p2REVdCKc4tM-dkyFkpi9Jxd0EmztgTM04P_rErMsl5x35if2baDsl63X1BajJ9rWEPfo90hYeEGdse-ti1mXaBLvwO655W0OO2SxHzPZ0jpDa2Wwp0FjFBqj-Ov-oSUp-vyWWAfcbJqcfk7elxXc2K-eL5pXqYF5Eb3Rd1kCGU0FgrQWvN0XNmlQyCKy9AO1diaayvwZVN44N1AaAWHqyFoJ1yckxu_34jIm4OKX5COm6UMEw4Jb8BaTlXgw |
ContentType | Conference Proceeding |
DBID | 6IE 6IH CBEJK RIE RIO |
DOI | 10.1109/CVPR.2007.383269 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore Digital Libary (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Statistics Computer Science |
EISBN | 1424411807 9781424411801 |
EISSN | 1063-6919 |
EndPage | 8 |
ExternalDocumentID | 4270294 |
Genre | orig-research |
GroupedDBID | 23M 29F 29O 6IE 6IH 6IK ABDPE ACGFS ALMA_UNASSIGNED_HOLDINGS CBEJK IPLJI M43 RIE RIO RNS |
ID | FETCH-LOGICAL-i175t-cf3ff6ad883a5551eb10843f214b2a5996e678bca96ddbf89faac2ba88af59493 |
IEDL.DBID | RIE |
ISBN | 9781424411795 1424411793 |
ISSN | 1063-6919 |
IngestDate | Wed Aug 27 01:48:26 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i175t-cf3ff6ad883a5551eb10843f214b2a5996e678bca96ddbf89faac2ba88af59493 |
PageCount | 8 |
ParticipantIDs | ieee_primary_4270294 |
PublicationCentury | 2000 |
PublicationDate | 2007-June |
PublicationDateYYYYMMDD | 2007-06-01 |
PublicationDate_xml | – month: 06 year: 2007 text: 2007-June |
PublicationDecade | 2000 |
PublicationTitle | 2007 IEEE Conference on Computer Vision and Pattern Recognition |
PublicationTitleAbbrev | CVPR |
PublicationYear | 2007 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0000818058 ssj0023720 ssj0003211698 |
Score | 2.065769 |
Snippet | This paper proposes a novel approach to constructing a hierarchical representation of visual input that aims to enable recognition and detection of a large... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 1 |
SubjectTerms | Biological systems Buildings Fires Hierarchical systems Indexing Information science Noise robustness Object detection Prototypes Statistics |
Title | Towards Scalable Representations of Object Categories: Learning a Hierarchy of Parts |
URI | https://ieeexplore.ieee.org/document/4270294 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT4MwFG-2nXaabjN-pwePsgEthXpdXBaT6bJsZrelQKuLBoywg_719hXKEuPBG31wgPLgff5-D6EbyqR-t4o6kgSRAwReDpc8cFQUMCm0VksKAOf5I5ut6cMm2LTQbYOFkVKa5jM5gkNTy0_zZA-psjEF8BSnbdTWalZhtZp8ClCz2QofrImObBhvKgo-TGMxlU9GHMY9bkFeQIlGLPdTvQ5sPdPl48nzYlkxHepYzjd90YcpLMYITXtobm-_6j15G-3LeJR8_2J2_O_zHaHhAe6HF40hO0YtmfVRr_ZPcf31F1pkR0BYWR91wVmtuJ4HaLUyPbiFPi3eAZKFl6bPtoY3ZQXOFX6KIfODJ8BQkUOcfodrjtcXLPBsB4Do5PULLl1otS6GaD29X01mTj21wdlpV6R0EkWUYiKNIiIC7Y9pY-BGlCjfo7EvgA1GagMZJ4KzNI1VxJUQiR9rvRAq4JSTE9TJ8kyeIhymoS9cX0qtUVSFikciNJVdLxVM_6vO0AA2cftREXNs6_07_1t8gbq22c_1LlGn_NzLK-1RlPG1UaUfXkfBfA |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8JAEJ4gHvSEAsa3e_BoebTbpeuVSKoCElIMN7Jtd5VoqJFy0F_vzvZBYjx460572e208_y-AbimTOp3q6glHdezkMDL4pK7lvJcJoXWakkR4DwaM39GH-buvAI3JRZGSmmaz2QLL00tP06iDabK2hTBU5zuwK62-9TN0FplRgXJ2YoaH64dHdswXtYUbJzHYmqfzLEY7_IC5oWkaE7B_pSv3aKi2eHt_vNkmnEd6mjONp3R2zksxgwNajAqNpB1n7y1NmnYir5_cTv-d4cH0NwC_sikNGWHUJGrOtRyD5Xk3_9ai4ohEIWsDvvormZszw0IAtOFu9a3xTuCssjUdNrmAKfVmiSKPIWY-yF95KhIMFK_JTnL6wsRxF8iJDp6_cJHJ1qx102YDe6Cvm_lcxuspXZGUitSjlJMxJ7nCFd7ZNocdDzqKLtLQ1sgH4zUJjKMBGdxHCqPKyEiO9SaIZTLKXeOoLpKVvIYSC_u2aJjS6l1iqqe4p7omdpuNxZM_61OoIGHuPjIqDkW-fmd_i2-gj0_GA0Xw_vx4xnsF61_ne45VNPPjbzQ_kUaXhq1-gG0XcTJ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2007+IEEE+Conference+on+Computer+Vision+and+Pattern+Recognition&rft.atitle=Towards+Scalable+Representations+of+Object+Categories%3A+Learning+a+Hierarchy+of+Parts&rft.au=Fidler%2C+S.&rft.au=Leonardis%2C+A.&rft.date=2007-06-01&rft.pub=IEEE&rft.isbn=9781424411795&rft.issn=1063-6919&rft.eissn=1063-6919&rft.spage=1&rft.epage=8&rft_id=info:doi/10.1109%2FCVPR.2007.383269&rft.externalDocID=4270294 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6919&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6919&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6919&client=summon |