Towards Scalable Representations of Object Categories: Learning a Hierarchy of Parts

This paper proposes a novel approach to constructing a hierarchical representation of visual input that aims to enable recognition and detection of a large number of object categories. Inspired by the principles of efficient indexing (bottom-up,), robust matching (top-down,), and ideas of compositio...

Full description

Saved in:
Bibliographic Details
Published in2007 IEEE Conference on Computer Vision and Pattern Recognition pp. 1 - 8
Main Authors Fidler, S., Leonardis, A.
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.06.2007
Subjects
Online AccessGet full text
ISBN9781424411795
1424411793
ISSN1063-6919
1063-6919
DOI10.1109/CVPR.2007.383269

Cover

Abstract This paper proposes a novel approach to constructing a hierarchical representation of visual input that aims to enable recognition and detection of a large number of object categories. Inspired by the principles of efficient indexing (bottom-up,), robust matching (top-down,), and ideas of compositionality, our approach learns a hierarchy of spatially flexible compositions, i.e. parts, in an unsupervised, statistics-driven manner. Starting with simple, frequent features, we learn the statistically most significant compositions (parts composed of parts), which consequently define the next layer. Parts are learned sequentially, layer after layer, optimally adjusting to the visual data. Lower layers are learned in a category-independent way to obtain complex, yet sharable visual building blocks, which is a crucial step towards a scalable representation. Higher layers of the hierarchy, on the other hand, are constructed by using specific categories, achieving a category representation with a small number of highly generalizable parts that gained their structural flexibility through composition within the hierarchy. Built in this way, new categories can be efficiently and continuously added to the system by adding a small number of parts only in the higher layers. The approach is demonstrated on a large collection of images and a variety of object categories. Detection results confirm the effectiveness and robustness of the learned parts.
AbstractList This paper proposes a novel approach to constructing a hierarchical representation of visual input that aims to enable recognition and detection of a large number of object categories. Inspired by the principles of efficient indexing (bottom-up,), robust matching (top-down,), and ideas of compositionality, our approach learns a hierarchy of spatially flexible compositions, i.e. parts, in an unsupervised, statistics-driven manner. Starting with simple, frequent features, we learn the statistically most significant compositions (parts composed of parts), which consequently define the next layer. Parts are learned sequentially, layer after layer, optimally adjusting to the visual data. Lower layers are learned in a category-independent way to obtain complex, yet sharable visual building blocks, which is a crucial step towards a scalable representation. Higher layers of the hierarchy, on the other hand, are constructed by using specific categories, achieving a category representation with a small number of highly generalizable parts that gained their structural flexibility through composition within the hierarchy. Built in this way, new categories can be efficiently and continuously added to the system by adding a small number of parts only in the higher layers. The approach is demonstrated on a large collection of images and a variety of object categories. Detection results confirm the effectiveness and robustness of the learned parts.
Author Fidler, S.
Leonardis, A.
Author_xml – sequence: 1
  givenname: S.
  surname: Fidler
  fullname: Fidler, S.
  organization: Univ. of Ljubljana, Ljubljana
– sequence: 2
  givenname: A.
  surname: Leonardis
  fullname: Leonardis, A.
  organization: Univ. of Ljubljana, Ljubljana
BookMark eNpNjE1PAjEURatiIiB7Ezf9A4P9nLbuzETFhASC6Ja8zrxiCc6QdhLDv1cjC-_mLs65d0QGbdciITecTTln7q56X66mgjEzlVaK0p2REVdCKc4tM-dkyFkpi9Jxd0EmztgTM04P_rErMsl5x35if2baDsl63X1BajJ9rWEPfo90hYeEGdse-ti1mXaBLvwO655W0OO2SxHzPZ0jpDa2Wwp0FjFBqj-Ov-oSUp-vyWWAfcbJqcfk7elxXc2K-eL5pXqYF5Eb3Rd1kCGU0FgrQWvN0XNmlQyCKy9AO1diaayvwZVN44N1AaAWHqyFoJ1yckxu_34jIm4OKX5COm6UMEw4Jb8BaTlXgw
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/CVPR.2007.383269
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore Digital Libary (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Statistics
Computer Science
EISBN 1424411807
9781424411801
EISSN 1063-6919
EndPage 8
ExternalDocumentID 4270294
Genre orig-research
GroupedDBID 23M
29F
29O
6IE
6IH
6IK
ABDPE
ACGFS
ALMA_UNASSIGNED_HOLDINGS
CBEJK
IPLJI
M43
RIE
RIO
RNS
ID FETCH-LOGICAL-i175t-cf3ff6ad883a5551eb10843f214b2a5996e678bca96ddbf89faac2ba88af59493
IEDL.DBID RIE
ISBN 9781424411795
1424411793
ISSN 1063-6919
IngestDate Wed Aug 27 01:48:26 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-cf3ff6ad883a5551eb10843f214b2a5996e678bca96ddbf89faac2ba88af59493
PageCount 8
ParticipantIDs ieee_primary_4270294
PublicationCentury 2000
PublicationDate 2007-June
PublicationDateYYYYMMDD 2007-06-01
PublicationDate_xml – month: 06
  year: 2007
  text: 2007-June
PublicationDecade 2000
PublicationTitle 2007 IEEE Conference on Computer Vision and Pattern Recognition
PublicationTitleAbbrev CVPR
PublicationYear 2007
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0000818058
ssj0023720
ssj0003211698
Score 2.065769
Snippet This paper proposes a novel approach to constructing a hierarchical representation of visual input that aims to enable recognition and detection of a large...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Biological systems
Buildings
Fires
Hierarchical systems
Indexing
Information science
Noise robustness
Object detection
Prototypes
Statistics
Title Towards Scalable Representations of Object Categories: Learning a Hierarchy of Parts
URI https://ieeexplore.ieee.org/document/4270294
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT4MwFG-2nXaabjN-pwePsgEthXpdXBaT6bJsZrelQKuLBoywg_719hXKEuPBG31wgPLgff5-D6EbyqR-t4o6kgSRAwReDpc8cFQUMCm0VksKAOf5I5ut6cMm2LTQbYOFkVKa5jM5gkNTy0_zZA-psjEF8BSnbdTWalZhtZp8ClCz2QofrImObBhvKgo-TGMxlU9GHMY9bkFeQIlGLPdTvQ5sPdPl48nzYlkxHepYzjd90YcpLMYITXtobm-_6j15G-3LeJR8_2J2_O_zHaHhAe6HF40hO0YtmfVRr_ZPcf31F1pkR0BYWR91wVmtuJ4HaLUyPbiFPi3eAZKFl6bPtoY3ZQXOFX6KIfODJ8BQkUOcfodrjtcXLPBsB4Do5PULLl1otS6GaD29X01mTj21wdlpV6R0EkWUYiKNIiIC7Y9pY-BGlCjfo7EvgA1GagMZJ4KzNI1VxJUQiR9rvRAq4JSTE9TJ8kyeIhymoS9cX0qtUVSFikciNJVdLxVM_6vO0AA2cftREXNs6_07_1t8gbq22c_1LlGn_NzLK-1RlPG1UaUfXkfBfA
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8JAEJ4gHvSEAsa3e_BoebTbpeuVSKoCElIMN7Jtd5VoqJFy0F_vzvZBYjx460572e208_y-AbimTOp3q6glHdezkMDL4pK7lvJcJoXWakkR4DwaM39GH-buvAI3JRZGSmmaz2QLL00tP06iDabK2hTBU5zuwK62-9TN0FplRgXJ2YoaH64dHdswXtYUbJzHYmqfzLEY7_IC5oWkaE7B_pSv3aKi2eHt_vNkmnEd6mjONp3R2zksxgwNajAqNpB1n7y1NmnYir5_cTv-d4cH0NwC_sikNGWHUJGrOtRyD5Xk3_9ai4ohEIWsDvvormZszw0IAtOFu9a3xTuCssjUdNrmAKfVmiSKPIWY-yF95KhIMFK_JTnL6wsRxF8iJDp6_cJHJ1qx102YDe6Cvm_lcxuspXZGUitSjlJMxJ7nCFd7ZNocdDzqKLtLQ1sgH4zUJjKMBGdxHCqPKyEiO9SaIZTLKXeOoLpKVvIYSC_u2aJjS6l1iqqe4p7omdpuNxZM_61OoIGHuPjIqDkW-fmd_i2-gj0_GA0Xw_vx4xnsF61_ne45VNPPjbzQ_kUaXhq1-gG0XcTJ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2007+IEEE+Conference+on+Computer+Vision+and+Pattern+Recognition&rft.atitle=Towards+Scalable+Representations+of+Object+Categories%3A+Learning+a+Hierarchy+of+Parts&rft.au=Fidler%2C+S.&rft.au=Leonardis%2C+A.&rft.date=2007-06-01&rft.pub=IEEE&rft.isbn=9781424411795&rft.issn=1063-6919&rft.eissn=1063-6919&rft.spage=1&rft.epage=8&rft_id=info:doi/10.1109%2FCVPR.2007.383269&rft.externalDocID=4270294
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6919&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6919&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6919&client=summon