Application of statistical neuronal networks for diagnostics of induction machine rotor faults
Induction machines are extensively used in industries and are subject to unexpected breakdowns. It is necessary, therefore, to prevent them from such breakdown through the maintenance that works according to a well-trained planning. A considerable number of diagnosis techniques have been used such a...
Saved in:
Published in | STA : proceedings : 2016 17th International Conference on Sciences and Techniques of Automatic Control and Computer Engineering : December 19-21, 2016, Sousse, Tunisia pp. 199 - 204 |
---|---|
Main Authors | , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.12.2016
|
Subjects | |
Online Access | Get full text |
DOI | 10.1109/STA.2016.7952063 |
Cover
Loading…
Abstract | Induction machines are extensively used in industries and are subject to unexpected breakdowns. It is necessary, therefore, to prevent them from such breakdown through the maintenance that works according to a well-trained planning. A considerable number of diagnosis techniques have been used such as Motor Current Signature Analysis (MCSA), Axial Flux Monitoring and Vibration Monitoring. This paper shows the effectiveness of the artificial neuronal network (radial basis function neuronal network and the probabilistic neuronal network) basis on MCSA for rotor faults diagnosis. |
---|---|
AbstractList | Induction machines are extensively used in industries and are subject to unexpected breakdowns. It is necessary, therefore, to prevent them from such breakdown through the maintenance that works according to a well-trained planning. A considerable number of diagnosis techniques have been used such as Motor Current Signature Analysis (MCSA), Axial Flux Monitoring and Vibration Monitoring. This paper shows the effectiveness of the artificial neuronal network (radial basis function neuronal network and the probabilistic neuronal network) basis on MCSA for rotor faults diagnosis. |
Author | Marmouch, Sameh Aroui, Tarek Koubaa, Yassine |
Author_xml | – sequence: 1 givenname: Sameh surname: Marmouch fullname: Marmouch, Sameh email: samehmarmouch@hotmail.com organization: Electr. Eng. Dept., Univ. of Sousse, Sousse, Tunisia – sequence: 2 givenname: Tarek surname: Aroui fullname: Aroui, Tarek email: tarek.aroui@einso.rnu.tn organization: Electr. Eng. Dept., Univ. of Sousse, Sousse, Tunisia – sequence: 3 givenname: Yassine surname: Koubaa fullname: Koubaa, Yassine email: yassine.koubaa@enis.rnu.tn organization: Electr. Eng. Dept., Univ. of Sfax, Sfax, Tunisia |
BookMark | eNotkE9LxDAUxCMoqGvvgpd-gdb3GtP0HcviP1jw4Hp1SZtEo92kNCnit3d33dMMw2_mMJfs1AdvGLtGKBGBbl_XbVkB1qUkUUHNT1hGskEBBPwOJJ2zLMYvAECqG-Tigr234zi4XiUXfB5sHtPOxrRLhtybeQr-YNJPmL5jbsOUa6c-fNgjcV9wXs_9ob1V_afzJp9C2mFWzUOKV-zMqiGa7KgL9vZwv14-FauXx-dluyocSpGK3oKRQLypBQmum9oCaKRKgTKGqgawU9qi7HhnK1MbLXTXISeSFhtOki_Yzf-uM8Zsxslt1fS7Ob7A_wDU61Yt |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/STA.2016.7952063 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE/IET Electronic Library IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISBN | 9781509034079 1509034072 |
EndPage | 204 |
ExternalDocumentID | 7952063 |
Genre | orig-research |
GroupedDBID | 6IE 6IF 6IK 6IL 6IN AAJGR AAWTH ADFMO ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK IEGSK OCL RIE RIL |
ID | FETCH-LOGICAL-i175t-cf0e7093865953d86f00d192a0aee92801badf17b3bf2e6ed5dbb13997f183973 |
IEDL.DBID | RIE |
IngestDate | Fri Mar 14 03:44:00 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i175t-cf0e7093865953d86f00d192a0aee92801badf17b3bf2e6ed5dbb13997f183973 |
PageCount | 6 |
ParticipantIDs | ieee_primary_7952063 |
PublicationCentury | 2000 |
PublicationDate | 2016-Dec. |
PublicationDateYYYYMMDD | 2016-12-01 |
PublicationDate_xml | – month: 12 year: 2016 text: 2016-Dec. |
PublicationDecade | 2010 |
PublicationTitle | STA : proceedings : 2016 17th International Conference on Sciences and Techniques of Automatic Control and Computer Engineering : December 19-21, 2016, Sousse, Tunisia |
PublicationTitleAbbrev | STA |
PublicationYear | 2016 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0001968135 |
Score | 1.6463568 |
Snippet | Induction machines are extensively used in industries and are subject to unexpected breakdowns. It is necessary, therefore, to prevent them from such breakdown... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 199 |
SubjectTerms | analysis motor current signature analysis Bars Biological neural networks induction machines Induction motors Neurons probabilistic neuronal network Radial basis function networks radial basis functions neuronal network Rotors Training |
Title | Application of statistical neuronal networks for diagnostics of induction machine rotor faults |
URI | https://ieeexplore.ieee.org/document/7952063 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEB7anvTioxXf5ODR3WZ3m30ciyhFUARb6MmySSYg1l1pdy_-eifZPlQ8eAuBsEsS-L7JfPMNwBVBwEDQZfFEEqA30CL1ZBJKT8mI8DUiUFfO7fMxHk0G91MxbcH1phYGEZ34DH07dLl8XaraPpX1k0yEBKltaFPg1tRqbd9TsjgNIrHORPKs_zweWulW7K-W_eif4uDjbg8e1h9uVCNvfl1JX33-8mT875_tQ29bqMeeNhB0AC0sDmH3m8dgF16G2xQ1Kw2zFUTOnDmfM2dmWbiBE4MvGVFYphv1nfVvtgsoaG8cZtm7E14iW5QUqDOT1_Nq2YPJ3e34ZuStmip4r8QUKk8ZjgnPbKvPTEQ6jQ3nmmheznPELCTAkrk2QSIjaUKMUQstJdHELDGWTCXREXSKssBjYGpglEaDKZfWYyaWGCke5nkYaJpJ9Ql07U7NPhrfjNlqk07_nj6DHXtajVTkHDrVosYLAvxKXrqT_gJnwK10 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LSgMxFL3UulA3PlrxbRYunZp5ZB7LIpaqbRFsoSvLJLkBsc5IO7Px600yfai4cBcCISEJnJPcc88FuNIQEDB9WRwWuegEksUOjzzuCO5rfPU1qAvr9jkIu6PgYczGNbhe5cIgohWfYcs0bSxf5qI0X2U3UcI8DakbsKknYG6VrbX-UUnC2PXZMhZJk5vnYduIt8LWYuCPCioWQDq70F9OXelG3lplwVvi85cr43_XtgfNdaoeeVqB0D7UMDuAnW8ugw14aa-D1CRXxOQQWXvmdEqsnWVmG1YOPieaxBJZ6e-Mg7MZoJ_tlccsebfSSySzXD_ViUrLaTFvwqhzN7ztOouyCs6r5gqFIxTFiCam2GfCfBmHilKpiV5KU8TE05DFU6nciPtceRiiZJJzTRSTSBk6FfmHUM_yDI-AiEAJiQpjyo3LTMjRF9RLU8-VuieWx9AwOzX5qJwzJotNOvm7-xK2usN-b9K7HzyewrY5uUo4cgb1YlbiuYb_gl_YU_8CnwmwvQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=STA+%3A+proceedings+%3A+2016+17th+International+Conference+on+Sciences+and+Techniques+of+Automatic+Control+and+Computer+Engineering+%3A+December+19-21%2C+2016%2C+Sousse%2C+Tunisia&rft.atitle=Application+of+statistical+neuronal+networks+for+diagnostics+of+induction+machine+rotor+faults&rft.au=Marmouch%2C+Sameh&rft.au=Aroui%2C+Tarek&rft.au=Koubaa%2C+Yassine&rft.date=2016-12-01&rft.pub=IEEE&rft.spage=199&rft.epage=204&rft_id=info:doi/10.1109%2FSTA.2016.7952063&rft.externalDocID=7952063 |