Application of statistical neuronal networks for diagnostics of induction machine rotor faults

Induction machines are extensively used in industries and are subject to unexpected breakdowns. It is necessary, therefore, to prevent them from such breakdown through the maintenance that works according to a well-trained planning. A considerable number of diagnosis techniques have been used such a...

Full description

Saved in:
Bibliographic Details
Published inSTA : proceedings : 2016 17th International Conference on Sciences and Techniques of Automatic Control and Computer Engineering : December 19-21, 2016, Sousse, Tunisia pp. 199 - 204
Main Authors Marmouch, Sameh, Aroui, Tarek, Koubaa, Yassine
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.12.2016
Subjects
Online AccessGet full text
DOI10.1109/STA.2016.7952063

Cover

Loading…
Abstract Induction machines are extensively used in industries and are subject to unexpected breakdowns. It is necessary, therefore, to prevent them from such breakdown through the maintenance that works according to a well-trained planning. A considerable number of diagnosis techniques have been used such as Motor Current Signature Analysis (MCSA), Axial Flux Monitoring and Vibration Monitoring. This paper shows the effectiveness of the artificial neuronal network (radial basis function neuronal network and the probabilistic neuronal network) basis on MCSA for rotor faults diagnosis.
AbstractList Induction machines are extensively used in industries and are subject to unexpected breakdowns. It is necessary, therefore, to prevent them from such breakdown through the maintenance that works according to a well-trained planning. A considerable number of diagnosis techniques have been used such as Motor Current Signature Analysis (MCSA), Axial Flux Monitoring and Vibration Monitoring. This paper shows the effectiveness of the artificial neuronal network (radial basis function neuronal network and the probabilistic neuronal network) basis on MCSA for rotor faults diagnosis.
Author Marmouch, Sameh
Aroui, Tarek
Koubaa, Yassine
Author_xml – sequence: 1
  givenname: Sameh
  surname: Marmouch
  fullname: Marmouch, Sameh
  email: samehmarmouch@hotmail.com
  organization: Electr. Eng. Dept., Univ. of Sousse, Sousse, Tunisia
– sequence: 2
  givenname: Tarek
  surname: Aroui
  fullname: Aroui, Tarek
  email: tarek.aroui@einso.rnu.tn
  organization: Electr. Eng. Dept., Univ. of Sousse, Sousse, Tunisia
– sequence: 3
  givenname: Yassine
  surname: Koubaa
  fullname: Koubaa, Yassine
  email: yassine.koubaa@enis.rnu.tn
  organization: Electr. Eng. Dept., Univ. of Sfax, Sfax, Tunisia
BookMark eNotkE9LxDAUxCMoqGvvgpd-gdb3GtP0HcviP1jw4Hp1SZtEo92kNCnit3d33dMMw2_mMJfs1AdvGLtGKBGBbl_XbVkB1qUkUUHNT1hGskEBBPwOJJ2zLMYvAECqG-Tigr234zi4XiUXfB5sHtPOxrRLhtybeQr-YNJPmL5jbsOUa6c-fNgjcV9wXs_9ob1V_afzJp9C2mFWzUOKV-zMqiGa7KgL9vZwv14-FauXx-dluyocSpGK3oKRQLypBQmum9oCaKRKgTKGqgawU9qi7HhnK1MbLXTXISeSFhtOki_Yzf-uM8Zsxslt1fS7Ob7A_wDU61Yt
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/STA.2016.7952063
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE/IET Electronic Library
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 9781509034079
1509034072
EndPage 204
ExternalDocumentID 7952063
Genre orig-research
GroupedDBID 6IE
6IF
6IK
6IL
6IN
AAJGR
AAWTH
ADFMO
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
IEGSK
OCL
RIE
RIL
ID FETCH-LOGICAL-i175t-cf0e7093865953d86f00d192a0aee92801badf17b3bf2e6ed5dbb13997f183973
IEDL.DBID RIE
IngestDate Fri Mar 14 03:44:00 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-cf0e7093865953d86f00d192a0aee92801badf17b3bf2e6ed5dbb13997f183973
PageCount 6
ParticipantIDs ieee_primary_7952063
PublicationCentury 2000
PublicationDate 2016-Dec.
PublicationDateYYYYMMDD 2016-12-01
PublicationDate_xml – month: 12
  year: 2016
  text: 2016-Dec.
PublicationDecade 2010
PublicationTitle STA : proceedings : 2016 17th International Conference on Sciences and Techniques of Automatic Control and Computer Engineering : December 19-21, 2016, Sousse, Tunisia
PublicationTitleAbbrev STA
PublicationYear 2016
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0001968135
Score 1.6463568
Snippet Induction machines are extensively used in industries and are subject to unexpected breakdowns. It is necessary, therefore, to prevent them from such breakdown...
SourceID ieee
SourceType Publisher
StartPage 199
SubjectTerms analysis motor current signature analysis
Bars
Biological neural networks
induction machines
Induction motors
Neurons
probabilistic neuronal network
Radial basis function networks
radial basis functions neuronal network
Rotors
Training
Title Application of statistical neuronal networks for diagnostics of induction machine rotor faults
URI https://ieeexplore.ieee.org/document/7952063
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEB7anvTioxXf5ODR3WZ3m30ciyhFUARb6MmySSYg1l1pdy_-eifZPlQ8eAuBsEsS-L7JfPMNwBVBwEDQZfFEEqA30CL1ZBJKT8mI8DUiUFfO7fMxHk0G91MxbcH1phYGEZ34DH07dLl8XaraPpX1k0yEBKltaFPg1tRqbd9TsjgNIrHORPKs_zweWulW7K-W_eif4uDjbg8e1h9uVCNvfl1JX33-8mT875_tQ29bqMeeNhB0AC0sDmH3m8dgF16G2xQ1Kw2zFUTOnDmfM2dmWbiBE4MvGVFYphv1nfVvtgsoaG8cZtm7E14iW5QUqDOT1_Nq2YPJ3e34ZuStmip4r8QUKk8ZjgnPbKvPTEQ6jQ3nmmheznPELCTAkrk2QSIjaUKMUQstJdHELDGWTCXREXSKssBjYGpglEaDKZfWYyaWGCke5nkYaJpJ9Ql07U7NPhrfjNlqk07_nj6DHXtajVTkHDrVosYLAvxKXrqT_gJnwK10
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LSgMxFL3UulA3PlrxbRYunZp5ZB7LIpaqbRFsoSvLJLkBsc5IO7Px600yfai4cBcCISEJnJPcc88FuNIQEDB9WRwWuegEksUOjzzuCO5rfPU1qAvr9jkIu6PgYczGNbhe5cIgohWfYcs0bSxf5qI0X2U3UcI8DakbsKknYG6VrbX-UUnC2PXZMhZJk5vnYduIt8LWYuCPCioWQDq70F9OXelG3lplwVvi85cr43_XtgfNdaoeeVqB0D7UMDuAnW8ugw14aa-D1CRXxOQQWXvmdEqsnWVmG1YOPieaxBJZ6e-Mg7MZoJ_tlccsebfSSySzXD_ViUrLaTFvwqhzN7ztOouyCs6r5gqFIxTFiCam2GfCfBmHilKpiV5KU8TE05DFU6nciPtceRiiZJJzTRSTSBk6FfmHUM_yDI-AiEAJiQpjyo3LTMjRF9RLU8-VuieWx9AwOzX5qJwzJotNOvm7-xK2usN-b9K7HzyewrY5uUo4cgb1YlbiuYb_gl_YU_8CnwmwvQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=STA+%3A+proceedings+%3A+2016+17th+International+Conference+on+Sciences+and+Techniques+of+Automatic+Control+and+Computer+Engineering+%3A+December+19-21%2C+2016%2C+Sousse%2C+Tunisia&rft.atitle=Application+of+statistical+neuronal+networks+for+diagnostics+of+induction+machine+rotor+faults&rft.au=Marmouch%2C+Sameh&rft.au=Aroui%2C+Tarek&rft.au=Koubaa%2C+Yassine&rft.date=2016-12-01&rft.pub=IEEE&rft.spage=199&rft.epage=204&rft_id=info:doi/10.1109%2FSTA.2016.7952063&rft.externalDocID=7952063