Sentic Computing for patient centered applications

Next-generation patients are far from being peripheral to health-care. They are central to understanding the effectiveness and efficiency of services and how they can be improved. Today a lot of patients are used to reviewing local health services on-line but this social information is just stored i...

Full description

Saved in:
Bibliographic Details
Published inIEEE 10th INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING PROCEEDINGS pp. 1279 - 1282
Main Authors Cambria, E, Hussain, A, Durrani, T, Havasi, C, Eckl, C, Munro, J
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.10.2010
Subjects
Online AccessGet full text
ISBN9781424458974
1424458978
ISSN2164-5221
DOI10.1109/ICOSP.2010.5657072

Cover

Abstract Next-generation patients are far from being peripheral to health-care. They are central to understanding the effectiveness and efficiency of services and how they can be improved. Today a lot of patients are used to reviewing local health services on-line but this social information is just stored in natural language text and it is not machine-accessible and machine-processable. To distil knowledge from this extremely unstructured information we use Sentic Computing, a new opinion mining and sentiment analysis paradigm which exploits AI and Semantic Web techniques to better recognize, interpret and process opinions and sentiments in natural language text. In particular, we use a language visualization and analysis system, a novel emotion categorization model, a resource for opinion mining based on a web ontology and novel techniques for finding and defining topic dependent concepts, namely spectral association and CF-IOF weighting respectively.
AbstractList Next-generation patients are far from being peripheral to health-care. They are central to understanding the effectiveness and efficiency of services and how they can be improved. Today a lot of patients are used to reviewing local health services on-line but this social information is just stored in natural language text and it is not machine-accessible and machine-processable. To distil knowledge from this extremely unstructured information we use Sentic Computing, a new opinion mining and sentiment analysis paradigm which exploits AI and Semantic Web techniques to better recognize, interpret and process opinions and sentiments in natural language text. In particular, we use a language visualization and analysis system, a novel emotion categorization model, a resource for opinion mining based on a web ontology and novel techniques for finding and defining topic dependent concepts, namely spectral association and CF-IOF weighting respectively.
Author Munro, J
Eckl, C
Cambria, E
Durrani, T
Hussain, A
Havasi, C
Author_xml – sequence: 1
  givenname: E
  surname: Cambria
  fullname: Cambria, E
  email: eca@cs.stir.ac.uk
  organization: Dept. of Comput. Sci. & Math., Univ. of Stirling, Stirling, UK
– sequence: 2
  givenname: A
  surname: Hussain
  fullname: Hussain, A
  email: ahu@cs.stir.ac.uk
  organization: Dept. of Comput. Sci. & Math., Univ. of Stirling, Stirling, UK
– sequence: 3
  givenname: T
  surname: Durrani
  fullname: Durrani, T
  email: tdu@cs.stir.ac.uk
  organization: Dept. of Comput. Sci. & Math., Univ. of Stirling, Stirling, UK
– sequence: 4
  givenname: C
  surname: Havasi
  fullname: Havasi, C
  email: havasi@media.mit.edu
  organization: Dept. of Comput. Sci. & Math., Univ. of Stirling, Stirling, UK
– sequence: 5
  givenname: C
  surname: Eckl
  fullname: Eckl, C
  email: chris.eckl@sitekit.net
  organization: Dept. of Comput. Sci. & Math., Univ. of Stirling, Stirling, UK
– sequence: 6
  givenname: J
  surname: Munro
  fullname: Munro, J
  email: james.munro@patientopinion.org.uk
  organization: Dept. of Comput. Sci. & Math., Univ. of Stirling, Stirling, UK
BookMark eNpVj8tKA0EURFuMYIzzA7rpH5jYt9-9lMFHIBAhug6dzr3SkswMM-PCv7fBbKxFFacWBXXDZm3XImN3IJYAIjysms32bSlFYWONE05esCo4D1pqbXwI_vIfOz1jcwlW10ZKuGbVOH6JIiOdDHbO5BbbKSfedKf-e8rtJ6du4H2ccul5KoYDHnjs-2NOpe3a8ZZdUTyOWJ1zwT6en96b13q9eVk1j-s6gzNTnUgIpZyl4CmkA2HUAEHtSXlp94kMAagoIDqTApIAIGHKJ5UQkk6oFuz-bzcj4q4f8ikOP7vza_ULWxVKgw
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICOSP.2010.5657072
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 9781424458998
9781424459001
1424459001
1424458994
EndPage 1282
ExternalDocumentID 5657072
Genre orig-research
GroupedDBID 6IE
6IF
6IH
6IK
6IL
6IN
AAJGR
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IPLJI
OCL
RIE
RIL
ID FETCH-LOGICAL-i175t-cf003376f98f9cdfea41193bf3826bcf5f113a01a75c9ef011f055653ce1c4ce3
IEDL.DBID RIE
ISBN 9781424458974
1424458978
ISSN 2164-5221
IngestDate Wed Aug 27 02:52:51 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-cf003376f98f9cdfea41193bf3826bcf5f113a01a75c9ef011f055653ce1c4ce3
PageCount 4
ParticipantIDs ieee_primary_5657072
PublicationCentury 2000
PublicationDate 2010-Oct.
PublicationDateYYYYMMDD 2010-10-01
PublicationDate_xml – month: 10
  year: 2010
  text: 2010-Oct.
PublicationDecade 2010
PublicationTitle IEEE 10th INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING PROCEEDINGS
PublicationTitleAbbrev ICOSP
PublicationYear 2010
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0000527296
ssj0003188636
Score 1.7378935
Snippet Next-generation patients are far from being peripheral to health-care. They are central to understanding the effectiveness and efficiency of services and how...
SourceID ieee
SourceType Publisher
StartPage 1279
SubjectTerms Analytical models
Approximation methods
E-Health
Hospitals
Knowledge Base Management
Natural languages
NLP
Opinion Mining and Sentiment Analysis
Semantic Networks
Semantics
XML
Title Sentic Computing for patient centered applications
URI https://ieeexplore.ieee.org/document/5657072
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFA9zJ734sYnf5ODRbE3atOl5OKYwHczBbiNN3wMRNpHu4l_vS7-c4sFbEwptSMj7-r3fj7HbLLCByjEWBk0uohCsMJkCkSKqJHMxJOhTA9OneLKIHpd62WF3bS8MAJTgMxj4x7KWn2_c1qfKhr5EFyR04e7RMat6tdp8SqAV-YlxO6azauJSIVBRREDxlpJNX5c2FDo1dE_1OGoaaoJ0-DB6ns8q1Ff9xR_SK6XlGR-yafPPFeDkbbAtsoH7_EXn-N9FHbH-d48fn7XW65h1YH3CDnboCXtMzT2UyPFK-YGmOHm4vGZi5R7W6YU--W4NvM8W4_uX0UTUGgvilRyHQjj0am5JjKnB1OUINpLk02UYUtyROdQoZWgDaRPtUkC6DdDT7-jQgXSRg_CUddebNZwxnpPrEUkrtXUuAq2szpUJQCdI7ymQ56znV796r2g0VvXCL_6evmT7ZaG-xM1dsW7xsYVrsv9FdlNu_BcfxKhj
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEB5KPagXH634NgePps1udvM4F0urbS20hd7KZjMLIrQi6cVf72xeVvHgLbsEkoFl55uZb-YDuE885fHUBG5kotQVPio3Sji6sTE8THSAobGpgfEkGCzE01IuG_BQ98IgYk4-w459zGv56UZvbaqsa0t0XkgX7h75fSGLbq06o-JJTkgxqNd0WqMg1wjkFBNQxMVZ1dklIwqeqoFP5VpULTVe3B32XmbTgvdVfvOH-Erue_pHMK7-uqCcvHW2WdLRn78GOv7XrGNof3f5OdPaf51AA9encLgzoLAFfGbJRNoptB9oyyGM65SzWB1L7LRSn85uFbwNi_7jvDdwS5UF95WgQ-ZqY_XcwsDEkYl1alAJRqguMT5FHok20jDmK4-pUOoYDd0Hxg7gkb5GpoVG_wya680az8FJCXwIpphUWguUXMmURx7K0NB7HNkFtKz1q_dikMaqNPzy7-072B_Mx6PVaDh5voKDvGyfs-iuoZl9bPGG0ECW3OaH4Asr36uw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=IEEE+10th+INTERNATIONAL+CONFERENCE+ON+SIGNAL+PROCESSING+PROCEEDINGS&rft.atitle=Sentic+Computing+for+patient+centered+applications&rft.au=Cambria%2C+E&rft.au=Hussain%2C+A&rft.au=Durrani%2C+T&rft.au=Havasi%2C+C&rft.date=2010-10-01&rft.pub=IEEE&rft.isbn=9781424458974&rft.issn=2164-5221&rft.spage=1279&rft.epage=1282&rft_id=info:doi/10.1109%2FICOSP.2010.5657072&rft.externalDocID=5657072
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2164-5221&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2164-5221&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2164-5221&client=summon