Fault feature extraction and classification based on HEWT and SVD: Application to rolling bearings under variable conditions

Achieving an accurate fault diagnosis of rolling bearings under variable working conditions is relatively difficult and challenging topic. Thus, a hybrid fault diagnosis method is proposed. The method combines the Hilbert empirical wavelet transform (HEWT) and the singular value decomposition (SVD)....

Full description

Saved in:
Bibliographic Details
Published in2017 6th International Conference on Systems and Control (ICSC) pp. 433 - 438
Main Authors Merainani, B., Rahmoune, C., Benazzouz, D., Ould Bouamama, B., Ratni, A.
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.05.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Achieving an accurate fault diagnosis of rolling bearings under variable working conditions is relatively difficult and challenging topic. Thus, a hybrid fault diagnosis method is proposed. The method combines the Hilbert empirical wavelet transform (HEWT) and the singular value decomposition (SVD). HEWT, a new self-adaptive time-frequency analysis was applied to the vibration signals to obtain the instantaneous amplitude matrices. Then, the singular value vectors, as the fault feature vectors were acquired by applying the SVD. The bearing fault classifications are displayed through the information that got from the first three singular values. Through experimental results, it was concluded, that the proposed method can accurately extract and classify the bearing fault features under variable conditions.
AbstractList Achieving an accurate fault diagnosis of rolling bearings under variable working conditions is relatively difficult and challenging topic. Thus, a hybrid fault diagnosis method is proposed. The method combines the Hilbert empirical wavelet transform (HEWT) and the singular value decomposition (SVD). HEWT, a new self-adaptive time-frequency analysis was applied to the vibration signals to obtain the instantaneous amplitude matrices. Then, the singular value vectors, as the fault feature vectors were acquired by applying the SVD. The bearing fault classifications are displayed through the information that got from the first three singular values. Through experimental results, it was concluded, that the proposed method can accurately extract and classify the bearing fault features under variable conditions.
Author Ratni, A.
Merainani, B.
Ould Bouamama, B.
Rahmoune, C.
Benazzouz, D.
Author_xml – sequence: 1
  givenname: B.
  surname: Merainani
  fullname: Merainani, B.
  email: b.merainani@gmail.com
  organization: Solid Mech. & Syst. Lab., Univ. of M'hamed Bougara Boumerdes, Boumerdes, Algeria
– sequence: 2
  givenname: C.
  surname: Rahmoune
  fullname: Rahmoune, C.
  organization: Solid Mech. & Syst. Lab., Univ. of M'hamed Bougara Boumerdes, Boumerdes, Algeria
– sequence: 3
  givenname: D.
  surname: Benazzouz
  fullname: Benazzouz, D.
  organization: Solid Mech. & Syst. Lab., Univ. of M'hamed Bougara Boumerdes, Boumerdes, Algeria
– sequence: 4
  givenname: B.
  surname: Ould Bouamama
  fullname: Ould Bouamama, B.
  organization: Centre de Rech. en Inf., Signal et Autom. de Lille, Univ. de Lille 1, Villeneuve-d'Ascq, France
– sequence: 5
  givenname: A.
  surname: Ratni
  fullname: Ratni, A.
  organization: Solid Mech. & Syst. Lab., Univ. of M'hamed Bougara Boumerdes, Boumerdes, Algeria
BookMark eNo1kMFOwzAMhgMCiW3sBeCSF-hwkrZpuE1lY5MmcdiA45S2DgoK6ZR0iEk8PGWM0__b_vxL9pBc-NYjITcMJoyBuluW7bqccGByIlVWSMbPyJBloECoHOCcDLiQKgHI5RUZx_gOAIIVql8YkO-53ruOGtTdPiDFry7ourOtp9o3tHY6RmtsrY-tSkdsaG8Ws9fNEVi_PNzT6W7n_pGupaF1zvo3WqEOvUa69w0G-tlXunJI69Y39heO1-TSaBdxfNIReZ7PNuUiWT09LsvpKrFMZl1So2GiSJGnuZG5Qg4oRX-DkSC5yJgschSNMY3hosqNMVk_ThXITFaCAYoRuf3LtYi43QX7ocNhe3qW-AE2wWDw
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICoSC.2017.7958712
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Xplore
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library Online
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 1509039600
9781509039609
9781509039593
1509039597
EISSN 2379-0067
EndPage 438
ExternalDocumentID 7958712
Genre orig-research
GroupedDBID 6IE
6IF
6IK
6IL
6IN
AAJGR
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
CBEJK
CHZPO
IPLJI
OCL
RIE
RIL
ID FETCH-LOGICAL-i175t-cef1384e246f769e20e73003f7072351786e3dffdf23b6fff5730490757b310e3
IEDL.DBID RIE
IngestDate Wed Jun 26 19:24:19 EDT 2024
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-cef1384e246f769e20e73003f7072351786e3dffdf23b6fff5730490757b310e3
PageCount 6
ParticipantIDs ieee_primary_7958712
PublicationCentury 2000
PublicationDate 2017-May
PublicationDateYYYYMMDD 2017-05-01
PublicationDate_xml – month: 05
  year: 2017
  text: 2017-May
PublicationDecade 2010
PublicationTitle 2017 6th International Conference on Systems and Control (ICSC)
PublicationTitleAbbrev ICoSC
PublicationYear 2017
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0003189017
Score 1.6748629
Snippet Achieving an accurate fault diagnosis of rolling bearings under variable working conditions is relatively difficult and challenging topic. Thus, a hybrid fault...
SourceID ieee
SourceType Publisher
StartPage 433
SubjectTerms Feature extraction
Matrix decomposition
Rolling bearings
Time-frequency analysis
Vibrations
Wavelet transforms
Title Fault feature extraction and classification based on HEWT and SVD: Application to rolling bearings under variable conditions
URI https://ieeexplore.ieee.org/document/7958712
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELZKJ1h4tIi3bmAkaRonccKGSquCVITUFrpVcXyWEFWCooQB8eM5J30AYmBzorxkX3yf777vzNilhzQDoies2HcTyxPoW2Q3kaV4kBB6CBNXmYzu6CEYTr37mT9rsKu1FgYRK_IZ2qZZ5fJVlpQmVNYRkU_4nibcLRFFtVZrHU8h2yTXJla6GCfq3PWycc-Qt4S9vPHHDiqVAxnsstHq1TVv5NUuC2knH7-qMv732_ZYeyPVg8e1E9pnDUwP2M63KoMt9jmIy0UBGqsankCzcV6rGSBOFSQGPhu-UDVEYLyaAmoM-8-T6oLx0-013Gzy3FBkkNelvEHSf2JC7WCkaDm805GRYgEtslXNBWuz6aA_6Q2t5aYL1gshicJKUHd56KHrBVoEEboOmpL2XAtHuNzvijBArrRW2uUy0Fr7wmTqCHkISVAR-SFrplmKRwwIWqrQkYrzmB4YqjgkcNiV2pMiVjGXx6xl-nH-VtfVmC-78OTv06ds24xlTTY8Y80iL_GcAEEhLypL-AKcLrdP
link.rule.ids 310,311,783,787,792,793,799,23942,23943,25152,27937,55086
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELaqMgALjxbxxgMjSdM4iRM2VFql0FZIbaFbFcdnCYESFCUMiB_POekDEAObE-Ul--L7fPd9Z0IuHcAZEBxuRK4dGw4H10C7CQzJvBjRgx_bUmd0hyMvnDp3M3dWI1crLQwAlOQzMHWzzOXLNC50qKzFAxfxPU64G4irfa9Sa60iKmid6Nz4UhljBa1-Jx13NH2Lm4tbf-yhUrqQ3g4ZLl9eMUdezCIXZvzxqy7jf79ulzTXYj36sHJDe6QGyT7Z_lZnsEE-e1HxmlMFZRVPivNxVukZaJRIGmsArRlD5SBR7dckxUbYfZqUF4wfb6_pzTrTTfOUZlUxbyrwT9HBdqrFaBl9xyMtxqK4zJYVG6xJpr3upBMai20XjGfEErkRg2oz3wHb8RT3ArAt0EXtmeIWt5nb5r4HTCollc2Ep5Ryuc7VIfbgAsEisANST9IEDglFcCl9S0jGInygLyMf4WFbKEfwSEZMHJGG7sf5W1VZY77owuO_T1-QzXAyHMwH_dH9CdnS41pRD09JPc8KOEN4kIvz0iq-AFrNupo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=2017+6th+International+Conference+on+Systems+and+Control+%28ICSC%29&rft.atitle=Fault+feature+extraction+and+classification+based+on+HEWT+and+SVD%3A+Application+to+rolling+bearings+under+variable+conditions&rft.au=Merainani%2C+B.&rft.au=Rahmoune%2C+C.&rft.au=Benazzouz%2C+D.&rft.au=Ould+Bouamama%2C+B.&rft.date=2017-05-01&rft.pub=IEEE&rft.eissn=2379-0067&rft.spage=433&rft.epage=438&rft_id=info:doi/10.1109%2FICoSC.2017.7958712&rft.externalDocID=7958712