Fault feature extraction and classification based on HEWT and SVD: Application to rolling bearings under variable conditions
Achieving an accurate fault diagnosis of rolling bearings under variable working conditions is relatively difficult and challenging topic. Thus, a hybrid fault diagnosis method is proposed. The method combines the Hilbert empirical wavelet transform (HEWT) and the singular value decomposition (SVD)....
Saved in:
Published in | 2017 6th International Conference on Systems and Control (ICSC) pp. 433 - 438 |
---|---|
Main Authors | , , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.05.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Achieving an accurate fault diagnosis of rolling bearings under variable working conditions is relatively difficult and challenging topic. Thus, a hybrid fault diagnosis method is proposed. The method combines the Hilbert empirical wavelet transform (HEWT) and the singular value decomposition (SVD). HEWT, a new self-adaptive time-frequency analysis was applied to the vibration signals to obtain the instantaneous amplitude matrices. Then, the singular value vectors, as the fault feature vectors were acquired by applying the SVD. The bearing fault classifications are displayed through the information that got from the first three singular values. Through experimental results, it was concluded, that the proposed method can accurately extract and classify the bearing fault features under variable conditions. |
---|---|
AbstractList | Achieving an accurate fault diagnosis of rolling bearings under variable working conditions is relatively difficult and challenging topic. Thus, a hybrid fault diagnosis method is proposed. The method combines the Hilbert empirical wavelet transform (HEWT) and the singular value decomposition (SVD). HEWT, a new self-adaptive time-frequency analysis was applied to the vibration signals to obtain the instantaneous amplitude matrices. Then, the singular value vectors, as the fault feature vectors were acquired by applying the SVD. The bearing fault classifications are displayed through the information that got from the first three singular values. Through experimental results, it was concluded, that the proposed method can accurately extract and classify the bearing fault features under variable conditions. |
Author | Ratni, A. Merainani, B. Ould Bouamama, B. Rahmoune, C. Benazzouz, D. |
Author_xml | – sequence: 1 givenname: B. surname: Merainani fullname: Merainani, B. email: b.merainani@gmail.com organization: Solid Mech. & Syst. Lab., Univ. of M'hamed Bougara Boumerdes, Boumerdes, Algeria – sequence: 2 givenname: C. surname: Rahmoune fullname: Rahmoune, C. organization: Solid Mech. & Syst. Lab., Univ. of M'hamed Bougara Boumerdes, Boumerdes, Algeria – sequence: 3 givenname: D. surname: Benazzouz fullname: Benazzouz, D. organization: Solid Mech. & Syst. Lab., Univ. of M'hamed Bougara Boumerdes, Boumerdes, Algeria – sequence: 4 givenname: B. surname: Ould Bouamama fullname: Ould Bouamama, B. organization: Centre de Rech. en Inf., Signal et Autom. de Lille, Univ. de Lille 1, Villeneuve-d'Ascq, France – sequence: 5 givenname: A. surname: Ratni fullname: Ratni, A. organization: Solid Mech. & Syst. Lab., Univ. of M'hamed Bougara Boumerdes, Boumerdes, Algeria |
BookMark | eNo1kMFOwzAMhgMCiW3sBeCSF-hwkrZpuE1lY5MmcdiA45S2DgoK6ZR0iEk8PGWM0__b_vxL9pBc-NYjITcMJoyBuluW7bqccGByIlVWSMbPyJBloECoHOCcDLiQKgHI5RUZx_gOAIIVql8YkO-53ruOGtTdPiDFry7ourOtp9o3tHY6RmtsrY-tSkdsaG8Ws9fNEVi_PNzT6W7n_pGupaF1zvo3WqEOvUa69w0G-tlXunJI69Y39heO1-TSaBdxfNIReZ7PNuUiWT09LsvpKrFMZl1So2GiSJGnuZG5Qg4oRX-DkSC5yJgschSNMY3hosqNMVk_ThXITFaCAYoRuf3LtYi43QX7ocNhe3qW-AE2wWDw |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/ICoSC.2017.7958712 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Xplore IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library Online url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISBN | 1509039600 9781509039609 9781509039593 1509039597 |
EISSN | 2379-0067 |
EndPage | 438 |
ExternalDocumentID | 7958712 |
Genre | orig-research |
GroupedDBID | 6IE 6IF 6IK 6IL 6IN AAJGR ADZIZ ALMA_UNASSIGNED_HOLDINGS CBEJK CHZPO IPLJI OCL RIE RIL |
ID | FETCH-LOGICAL-i175t-cef1384e246f769e20e73003f7072351786e3dffdf23b6fff5730490757b310e3 |
IEDL.DBID | RIE |
IngestDate | Wed Jun 26 19:24:19 EDT 2024 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i175t-cef1384e246f769e20e73003f7072351786e3dffdf23b6fff5730490757b310e3 |
PageCount | 6 |
ParticipantIDs | ieee_primary_7958712 |
PublicationCentury | 2000 |
PublicationDate | 2017-May |
PublicationDateYYYYMMDD | 2017-05-01 |
PublicationDate_xml | – month: 05 year: 2017 text: 2017-May |
PublicationDecade | 2010 |
PublicationTitle | 2017 6th International Conference on Systems and Control (ICSC) |
PublicationTitleAbbrev | ICoSC |
PublicationYear | 2017 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0003189017 |
Score | 1.6748629 |
Snippet | Achieving an accurate fault diagnosis of rolling bearings under variable working conditions is relatively difficult and challenging topic. Thus, a hybrid fault... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 433 |
SubjectTerms | Feature extraction Matrix decomposition Rolling bearings Time-frequency analysis Vibrations Wavelet transforms |
Title | Fault feature extraction and classification based on HEWT and SVD: Application to rolling bearings under variable conditions |
URI | https://ieeexplore.ieee.org/document/7958712 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELZKJ1h4tIi3bmAkaRonccKGSquCVITUFrpVcXyWEFWCooQB8eM5J30AYmBzorxkX3yf777vzNilhzQDoies2HcTyxPoW2Q3kaV4kBB6CBNXmYzu6CEYTr37mT9rsKu1FgYRK_IZ2qZZ5fJVlpQmVNYRkU_4nibcLRFFtVZrHU8h2yTXJla6GCfq3PWycc-Qt4S9vPHHDiqVAxnsstHq1TVv5NUuC2knH7-qMv732_ZYeyPVg8e1E9pnDUwP2M63KoMt9jmIy0UBGqsankCzcV6rGSBOFSQGPhu-UDVEYLyaAmoM-8-T6oLx0-013Gzy3FBkkNelvEHSf2JC7WCkaDm805GRYgEtslXNBWuz6aA_6Q2t5aYL1gshicJKUHd56KHrBVoEEboOmpL2XAtHuNzvijBArrRW2uUy0Fr7wmTqCHkISVAR-SFrplmKRwwIWqrQkYrzmB4YqjgkcNiV2pMiVjGXx6xl-nH-VtfVmC-78OTv06ds24xlTTY8Y80iL_GcAEEhLypL-AKcLrdP |
link.rule.ids | 310,311,783,787,792,793,799,23942,23943,25152,27937,55086 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELaqMgALjxbxxgMjSdM4iRM2VFql0FZIbaFbFcdnCYESFCUMiB_POekDEAObE-Ul--L7fPd9Z0IuHcAZEBxuRK4dGw4H10C7CQzJvBjRgx_bUmd0hyMvnDp3M3dWI1crLQwAlOQzMHWzzOXLNC50qKzFAxfxPU64G4irfa9Sa60iKmid6Nz4UhljBa1-Jx13NH2Lm4tbf-yhUrqQ3g4ZLl9eMUdezCIXZvzxqy7jf79ulzTXYj36sHJDe6QGyT7Z_lZnsEE-e1HxmlMFZRVPivNxVukZaJRIGmsArRlD5SBR7dckxUbYfZqUF4wfb6_pzTrTTfOUZlUxbyrwT9HBdqrFaBl9xyMtxqK4zJYVG6xJpr3upBMai20XjGfEErkRg2oz3wHb8RT3ArAt0EXtmeIWt5nb5r4HTCollc2Ep5Ryuc7VIfbgAsEisANST9IEDglFcCl9S0jGInygLyMf4WFbKEfwSEZMHJGG7sf5W1VZY77owuO_T1-QzXAyHMwH_dH9CdnS41pRD09JPc8KOEN4kIvz0iq-AFrNupo |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=2017+6th+International+Conference+on+Systems+and+Control+%28ICSC%29&rft.atitle=Fault+feature+extraction+and+classification+based+on+HEWT+and+SVD%3A+Application+to+rolling+bearings+under+variable+conditions&rft.au=Merainani%2C+B.&rft.au=Rahmoune%2C+C.&rft.au=Benazzouz%2C+D.&rft.au=Ould+Bouamama%2C+B.&rft.date=2017-05-01&rft.pub=IEEE&rft.eissn=2379-0067&rft.spage=433&rft.epage=438&rft_id=info:doi/10.1109%2FICoSC.2017.7958712&rft.externalDocID=7958712 |