Learning discriminative features from electroencephalography recordings by encoding similarity constraints

This paper introduces a pre-training technique for learning discriminative features from electroencephalography (EEG) recordings using deep neural networks. EEG data are generally only available in small quantities, they are high-dimensional with a poor signal-to-noise ratio, and there is considerab...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the ... IEEE International Conference on Acoustics, Speech and Signal Processing (1998) pp. 6175 - 6179
Main Author Stober, Sebastian
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.03.2017
Subjects
Online AccessGet full text
ISSN2379-190X
DOI10.1109/ICASSP.2017.7953343

Cover

Loading…
Abstract This paper introduces a pre-training technique for learning discriminative features from electroencephalography (EEG) recordings using deep neural networks. EEG data are generally only available in small quantities, they are high-dimensional with a poor signal-to-noise ratio, and there is considerable variability between individual subjects and recording sessions. Similarity-constraint encoders as introduced in this paper specifically address these challenges for feature learning. They learn features that allow to distinguish between classes by demanding that encodings of two trials from the same class are more similar to each other than to encoded trials from other classes. This tuple-based training approach is especially suitable for small datasets. The proposed technique is evaluated using the publicly available OpenMIIR dataset of EEG recordings taken while participants listened to and imagined music. For this dataset, a simple convolutional filter can be learned that significantly improves the signal-to-noise ratio while aggregating the 64 EEG channels into a single waveform.
AbstractList This paper introduces a pre-training technique for learning discriminative features from electroencephalography (EEG) recordings using deep neural networks. EEG data are generally only available in small quantities, they are high-dimensional with a poor signal-to-noise ratio, and there is considerable variability between individual subjects and recording sessions. Similarity-constraint encoders as introduced in this paper specifically address these challenges for feature learning. They learn features that allow to distinguish between classes by demanding that encodings of two trials from the same class are more similar to each other than to encoded trials from other classes. This tuple-based training approach is especially suitable for small datasets. The proposed technique is evaluated using the publicly available OpenMIIR dataset of EEG recordings taken while participants listened to and imagined music. For this dataset, a simple convolutional filter can be learned that significantly improves the signal-to-noise ratio while aggregating the 64 EEG channels into a single waveform.
Author Stober, Sebastian
Author_xml – sequence: 1
  givenname: Sebastian
  surname: Stober
  fullname: Stober, Sebastian
  email: sstober@uni-potsdam.de
  organization: Res. Focus Cognitive Sci., Univ. of Potsdam, Potsdam, Germany
BookMark eNotkNtKAzEYhKMo2FafoDd5ga057Sa5lOIJCgpV8K5ks3_alG2yJFHYt3fFXg3DMB_MzNFViAEQWlKyopTo-9f1w3b7vmKEypXUNeeCX6A5rYkmglLZXKIZ41JXVJOvGzTP-UgIUVKoGTpuwKTgwx53PtvkTz6Y4n8AOzDlO0HGLsUThh5sSRGCheFg-rhPZjiMOIGNqZvaGbcjntL4Z3CeML1JvozYxpBLMj6UfIuunekz3J11gT6fHj_WL9Xm7XlasKk8lXWpLCinmo5JK1lDWk1rA6yTQlgtrDBEOFtbpRTTTHIGrFUdMxy6BqBx2jm-QMt_rgeA3TBtMmncnX_hv1vuXbE
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/ICASSP.2017.7953343
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Music
EISBN 1509041176
9781509041176
EISSN 2379-190X
EndPage 6179
ExternalDocumentID 7953343
Genre orig-research
GroupedDBID 23M
29P
6IE
6IF
6IH
6IK
6IL
6IM
6IN
AAJGR
AAWTH
ABLEC
ACGFS
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IJVOP
IPLJI
M43
OCL
RIE
RIL
RIO
RNS
ID FETCH-LOGICAL-i175t-ce8f86d27c7260b915ae2d744c94c4a04fc5c888292732e2b8d2a3ed6ee6f9ff3
IEDL.DBID RIE
IngestDate Wed Aug 27 02:15:27 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-ce8f86d27c7260b915ae2d744c94c4a04fc5c888292732e2b8d2a3ed6ee6f9ff3
PageCount 5
ParticipantIDs ieee_primary_7953343
PublicationCentury 2000
PublicationDate 2017-March
PublicationDateYYYYMMDD 2017-03-01
PublicationDate_xml – month: 03
  year: 2017
  text: 2017-March
PublicationDecade 2010
PublicationTitle Proceedings of the ... IEEE International Conference on Acoustics, Speech and Signal Processing (1998)
PublicationTitleAbbrev ICASSP
PublicationYear 2017
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0008748
Score 2.1289546
Snippet This paper introduces a pre-training technique for learning discriminative features from electroencephalography (EEG) recordings using deep neural networks....
SourceID ieee
SourceType Publisher
StartPage 6175
SubjectTerms EEG
Electroencephalography
Encoding
Feature Learning
Machine learning
Music
Music Perception
Pipelines
Signal to noise ratio
Training
Title Learning discriminative features from electroencephalography recordings by encoding similarity constraints
URI https://ieeexplore.ieee.org/document/7953343
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT8JAEJ0gXvSiAsbv7MGjLbBdutujIRI0wZAgCTfS3Z31KwEi5aC_3p224Ec8eGub7LbZSXbebOe9B3Dpy1iulBAeuQkXiLQlAh0bX6ykti00d0pbIgoP7uP-WNxNOpMKXG24MIiYN59hSJf5v3w7Nys6KmtK6oUU0RZs-cKt4Gptdl0lhSpVhdqtpHnbvR6NhtS6JcNy2A__lDx99PZgsH5x0TXyGq4yHZqPX5qM__2yfWh8EfXYcJOCDqCCsxrsftMYrMF27uRch5dSSfWRERG3MPOirY45zLU9l4yYJqy0xaGZF0_pWtCaFWc5dKrO9Dsj8Uu6YUs_jS-NPZJnhoAm-U1kywaMezcP3X5QGi0Ezx49ZIFB5VRsuTTSlzc6aXdS5FYKYRJhKH7OdIwvlXniwQ5HrpXlaYQ2Roxd4lx0CNXZfIZHwFoaXeohVepxj6Bcp-NYJU6jMkpLGx1DnVZvuii0NKblwp38_fgUdiiCRc_XGVSztxWeexCQ6Ys8-p84sbX3
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT8JAEJ0gHNSLChi_3YNHW2C7tNujIRpQICRAwo10t7N-JUCkHPTXu9MW_IgHb22TbpvdZufNdN57AFc2jeVSCmGRmzCOiOrCUb62yUoUN4TiRqqYiMK9vt8ei_tJc1KA6w0XBhHT5jN06TD9lx_P9YpKZbWAeiGFtwUlG_dFmLG1NvuuDITMdYUa9bDWad0MhwNq3grc_MYfDippALnbg9760VnfyKu7SpSrP36pMv733fah-kXVY4NNEDqAAs7KsPtNZbAMpdTLuQIvuZbqIyMqbmbnRZsdM5iqey4ZcU1YboxDIy-eorWkNcuqOVRXZ-qdkfwlnbClHcYmxxbLM01QkxwnkmUVxne3o1bbya0WnGeLHxJHozTSj3mgA5vgqLDRjJDHgRA6FJpW0OimtskyDy3c4ciVjHnkYewj-iY0xjuE4mw-wyNgdYUmsqAqsshHULRTvi9Do1BqqYLYO4YKzd50kalpTPOJO_n78iVst0e97rTb6T-cwg6tZtYBdgbF5G2F5xYSJOoi_RI-Ae2cuUc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Proceedings+of+the+...+IEEE+International+Conference+on+Acoustics%2C+Speech+and+Signal+Processing+%281998%29&rft.atitle=Learning+discriminative+features+from+electroencephalography+recordings+by+encoding+similarity+constraints&rft.au=Stober%2C+Sebastian&rft.date=2017-03-01&rft.pub=IEEE&rft.eissn=2379-190X&rft.spage=6175&rft.epage=6179&rft_id=info:doi/10.1109%2FICASSP.2017.7953343&rft.externalDocID=7953343