Learning discriminative features from electroencephalography recordings by encoding similarity constraints
This paper introduces a pre-training technique for learning discriminative features from electroencephalography (EEG) recordings using deep neural networks. EEG data are generally only available in small quantities, they are high-dimensional with a poor signal-to-noise ratio, and there is considerab...
Saved in:
Published in | Proceedings of the ... IEEE International Conference on Acoustics, Speech and Signal Processing (1998) pp. 6175 - 6179 |
---|---|
Main Author | |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.03.2017
|
Subjects | |
Online Access | Get full text |
ISSN | 2379-190X |
DOI | 10.1109/ICASSP.2017.7953343 |
Cover
Loading…
Abstract | This paper introduces a pre-training technique for learning discriminative features from electroencephalography (EEG) recordings using deep neural networks. EEG data are generally only available in small quantities, they are high-dimensional with a poor signal-to-noise ratio, and there is considerable variability between individual subjects and recording sessions. Similarity-constraint encoders as introduced in this paper specifically address these challenges for feature learning. They learn features that allow to distinguish between classes by demanding that encodings of two trials from the same class are more similar to each other than to encoded trials from other classes. This tuple-based training approach is especially suitable for small datasets. The proposed technique is evaluated using the publicly available OpenMIIR dataset of EEG recordings taken while participants listened to and imagined music. For this dataset, a simple convolutional filter can be learned that significantly improves the signal-to-noise ratio while aggregating the 64 EEG channels into a single waveform. |
---|---|
AbstractList | This paper introduces a pre-training technique for learning discriminative features from electroencephalography (EEG) recordings using deep neural networks. EEG data are generally only available in small quantities, they are high-dimensional with a poor signal-to-noise ratio, and there is considerable variability between individual subjects and recording sessions. Similarity-constraint encoders as introduced in this paper specifically address these challenges for feature learning. They learn features that allow to distinguish between classes by demanding that encodings of two trials from the same class are more similar to each other than to encoded trials from other classes. This tuple-based training approach is especially suitable for small datasets. The proposed technique is evaluated using the publicly available OpenMIIR dataset of EEG recordings taken while participants listened to and imagined music. For this dataset, a simple convolutional filter can be learned that significantly improves the signal-to-noise ratio while aggregating the 64 EEG channels into a single waveform. |
Author | Stober, Sebastian |
Author_xml | – sequence: 1 givenname: Sebastian surname: Stober fullname: Stober, Sebastian email: sstober@uni-potsdam.de organization: Res. Focus Cognitive Sci., Univ. of Potsdam, Potsdam, Germany |
BookMark | eNotkNtKAzEYhKMo2FafoDd5ga057Sa5lOIJCgpV8K5ks3_alG2yJFHYt3fFXg3DMB_MzNFViAEQWlKyopTo-9f1w3b7vmKEypXUNeeCX6A5rYkmglLZXKIZ41JXVJOvGzTP-UgIUVKoGTpuwKTgwx53PtvkTz6Y4n8AOzDlO0HGLsUThh5sSRGCheFg-rhPZjiMOIGNqZvaGbcjntL4Z3CeML1JvozYxpBLMj6UfIuunekz3J11gT6fHj_WL9Xm7XlasKk8lXWpLCinmo5JK1lDWk1rA6yTQlgtrDBEOFtbpRTTTHIGrFUdMxy6BqBx2jm-QMt_rgeA3TBtMmncnX_hv1vuXbE |
ContentType | Conference Proceeding |
DBID | 6IE 6IH CBEJK RIE RIO |
DOI | 10.1109/ICASSP.2017.7953343 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Music |
EISBN | 1509041176 9781509041176 |
EISSN | 2379-190X |
EndPage | 6179 |
ExternalDocumentID | 7953343 |
Genre | orig-research |
GroupedDBID | 23M 29P 6IE 6IF 6IH 6IK 6IL 6IM 6IN AAJGR AAWTH ABLEC ACGFS ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IJVOP IPLJI M43 OCL RIE RIL RIO RNS |
ID | FETCH-LOGICAL-i175t-ce8f86d27c7260b915ae2d744c94c4a04fc5c888292732e2b8d2a3ed6ee6f9ff3 |
IEDL.DBID | RIE |
IngestDate | Wed Aug 27 02:15:27 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i175t-ce8f86d27c7260b915ae2d744c94c4a04fc5c888292732e2b8d2a3ed6ee6f9ff3 |
PageCount | 5 |
ParticipantIDs | ieee_primary_7953343 |
PublicationCentury | 2000 |
PublicationDate | 2017-March |
PublicationDateYYYYMMDD | 2017-03-01 |
PublicationDate_xml | – month: 03 year: 2017 text: 2017-March |
PublicationDecade | 2010 |
PublicationTitle | Proceedings of the ... IEEE International Conference on Acoustics, Speech and Signal Processing (1998) |
PublicationTitleAbbrev | ICASSP |
PublicationYear | 2017 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0008748 |
Score | 2.1289546 |
Snippet | This paper introduces a pre-training technique for learning discriminative features from electroencephalography (EEG) recordings using deep neural networks.... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 6175 |
SubjectTerms | EEG Electroencephalography Encoding Feature Learning Machine learning Music Music Perception Pipelines Signal to noise ratio Training |
Title | Learning discriminative features from electroencephalography recordings by encoding similarity constraints |
URI | https://ieeexplore.ieee.org/document/7953343 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT8JAEJ0gXvSiAsbv7MGjLbBdutujIRI0wZAgCTfS3Z31KwEi5aC_3p224Ec8eGub7LbZSXbebOe9B3Dpy1iulBAeuQkXiLQlAh0bX6ykti00d0pbIgoP7uP-WNxNOpMKXG24MIiYN59hSJf5v3w7Nys6KmtK6oUU0RZs-cKt4Gptdl0lhSpVhdqtpHnbvR6NhtS6JcNy2A__lDx99PZgsH5x0TXyGq4yHZqPX5qM__2yfWh8EfXYcJOCDqCCsxrsftMYrMF27uRch5dSSfWRERG3MPOirY45zLU9l4yYJqy0xaGZF0_pWtCaFWc5dKrO9Dsj8Uu6YUs_jS-NPZJnhoAm-U1kywaMezcP3X5QGi0Ezx49ZIFB5VRsuTTSlzc6aXdS5FYKYRJhKH7OdIwvlXniwQ5HrpXlaYQ2Roxd4lx0CNXZfIZHwFoaXeohVepxj6Bcp-NYJU6jMkpLGx1DnVZvuii0NKblwp38_fgUdiiCRc_XGVSztxWeexCQ6Ys8-p84sbX3 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT8JAEJ0gHNSLChi_3YNHW2C7tNujIRpQICRAwo10t7N-JUCkHPTXu9MW_IgHb22TbpvdZufNdN57AFc2jeVSCmGRmzCOiOrCUb62yUoUN4TiRqqYiMK9vt8ei_tJc1KA6w0XBhHT5jN06TD9lx_P9YpKZbWAeiGFtwUlG_dFmLG1NvuuDITMdYUa9bDWad0MhwNq3grc_MYfDippALnbg9760VnfyKu7SpSrP36pMv733fah-kXVY4NNEDqAAs7KsPtNZbAMpdTLuQIvuZbqIyMqbmbnRZsdM5iqey4ZcU1YboxDIy-eorWkNcuqOVRXZ-qdkfwlnbClHcYmxxbLM01QkxwnkmUVxne3o1bbya0WnGeLHxJHozTSj3mgA5vgqLDRjJDHgRA6FJpW0OimtskyDy3c4ciVjHnkYewj-iY0xjuE4mw-wyNgdYUmsqAqsshHULRTvi9Do1BqqYLYO4YKzd50kalpTPOJO_n78iVst0e97rTb6T-cwg6tZtYBdgbF5G2F5xYSJOoi_RI-Ae2cuUc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Proceedings+of+the+...+IEEE+International+Conference+on+Acoustics%2C+Speech+and+Signal+Processing+%281998%29&rft.atitle=Learning+discriminative+features+from+electroencephalography+recordings+by+encoding+similarity+constraints&rft.au=Stober%2C+Sebastian&rft.date=2017-03-01&rft.pub=IEEE&rft.eissn=2379-190X&rft.spage=6175&rft.epage=6179&rft_id=info:doi/10.1109%2FICASSP.2017.7953343&rft.externalDocID=7953343 |