A two-stage minimum spanning tree (MST) based clustering algorithm for 2D deformable registration of time sequenced images

Significant cardiac and respiratory motion of the living subject, occasional spells of defocus, drifts in the field of view, and long image sequences make the registration of in-vivo microscopy image sequences used in atherosclerosis study an onerous task. In this study we developed and implemented...

Full description

Saved in:
Bibliographic Details
Published in2017 IEEE International Conference on Image Processing (ICIP) pp. 1472 - 1476
Main Authors Saha, Baidya Nath, Ray, Nilanjan, McArdle, Sara, Ley, Klaus
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.09.2017
Subjects
Online AccessGet full text
ISSN2381-8549
DOI10.1109/ICIP.2017.8296526

Cover

Loading…
Abstract Significant cardiac and respiratory motion of the living subject, occasional spells of defocus, drifts in the field of view, and long image sequences make the registration of in-vivo microscopy image sequences used in atherosclerosis study an onerous task. In this study we developed and implemented a novel Minimum Spanning Tree (MST)-based clustering method for image sequence registration that first constructs a minimum spanning tree for the input image sequence. The spanning tree re-orders the images in such a way where poor quality images appear at the end of the sequence. Then the spanning tree is clustered into several groups based on the similarity of the images. Subsequently deformable registration is conducted locally within the group with respect to the local anchor image selected automatically from the images in the group. After that coarse registration is performed to find the global anchor and then a deformable registration is performed globally to incorporate larger drift and distortion. Two-stage deformable registration incrementally incorporates larger drifts and distortions present in the longer sequence. Our algorithm involves very few tuning parameters, the optimal value of these parameters can be easily learned from data. Our method outperforms other methods on microscopy image sequences of mouse arteries.
AbstractList Significant cardiac and respiratory motion of the living subject, occasional spells of defocus, drifts in the field of view, and long image sequences make the registration of in-vivo microscopy image sequences used in atherosclerosis study an onerous task. In this study we developed and implemented a novel Minimum Spanning Tree (MST)-based clustering method for image sequence registration that first constructs a minimum spanning tree for the input image sequence. The spanning tree re-orders the images in such a way where poor quality images appear at the end of the sequence. Then the spanning tree is clustered into several groups based on the similarity of the images. Subsequently deformable registration is conducted locally within the group with respect to the local anchor image selected automatically from the images in the group. After that coarse registration is performed to find the global anchor and then a deformable registration is performed globally to incorporate larger drift and distortion. Two-stage deformable registration incrementally incorporates larger drifts and distortions present in the longer sequence. Our algorithm involves very few tuning parameters, the optimal value of these parameters can be easily learned from data. Our method outperforms other methods on microscopy image sequences of mouse arteries.
Author Ray, Nilanjan
Saha, Baidya Nath
Ley, Klaus
McArdle, Sara
Author_xml – sequence: 1
  givenname: Baidya Nath
  surname: Saha
  fullname: Saha, Baidya Nath
  email: baidya.saha@cimat.mx
  organization: Centro de Investig. en Mat., Monterrey, Mexico
– sequence: 2
  givenname: Nilanjan
  surname: Ray
  fullname: Ray, Nilanjan
  email: nrayl@ualberta.ca
  organization: Department of Computing Science, University of Alberta, Edmonton, Alberta, Canada, T6G 2E8
– sequence: 3
  givenname: Sara
  surname: McArdle
  fullname: McArdle, Sara
  email: smcardle@liai.org
  organization: La Jolla Institute for Allergy & Immunology, La Jolla, CA, USA
– sequence: 4
  givenname: Klaus
  surname: Ley
  fullname: Ley, Klaus
  email: klaus@liai.org
  organization: La Jolla Institute for Allergy & Immunology, La Jolla, CA, USA
BookMark eNotUEtPwzAYCwgktrEfgLjkCIeOPNomOU7jVWkIJMZ5StOvJahNR5IJwa8niJ1syZZteYpO3OgAoQtKFpQSdVOtqpcFI1QsJFNlwcojNFdC0oIowqgo5DGaMC5pJotcnaFpCB-EJD-nE_SzxPFrzELUHeDBOjvsBxx22jnrOhw9AL56et1c41oHaLDp9yGC_9N0343exvcBt6PH7BY3kMig6x6wh86G6HW0o8Nji6MdAAf43IMzKcUOqS2co9NW9wHmB5yht_u7zeoxWz8_VKvlOrNpe8yMVLUE1YLhTWu0BF0KnpAqxhuhGmak0CZnRDKjKTcl0zmtTVOKHIAY4DN0-Z9rAWC786ndf28PV_FfFTFhZg
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/ICIP.2017.8296526
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISBN 9781509021758
1509021752
EISSN 2381-8549
EndPage 1476
ExternalDocumentID 8296526
Genre orig-research
GroupedDBID 29O
6IE
6IF
6IH
6IK
6IL
6IM
6IN
AAJGR
AAWTH
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IPLJI
M43
OCL
RIE
RIL
RIO
RNS
ID FETCH-LOGICAL-i175t-c89b8e9fec3dfca8ea673ca81923d79d2c87ac42082ca13c62a41bcd674ee0ce3
IEDL.DBID RIE
IngestDate Wed Aug 27 02:37:10 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-c89b8e9fec3dfca8ea673ca81923d79d2c87ac42082ca13c62a41bcd674ee0ce3
PageCount 5
ParticipantIDs ieee_primary_8296526
PublicationCentury 2000
PublicationDate 2017-Sept.
PublicationDateYYYYMMDD 2017-09-01
PublicationDate_xml – month: 09
  year: 2017
  text: 2017-Sept.
PublicationDecade 2010
PublicationTitle 2017 IEEE International Conference on Image Processing (ICIP)
PublicationTitleAbbrev ICIP
PublicationYear 2017
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0020131
ssj0002269320
Score 2.0094125
Snippet Significant cardiac and respiratory motion of the living subject, occasional spells of defocus, drifts in the field of view, and long image sequences make the...
SourceID ieee
SourceType Publisher
StartPage 1472
SubjectTerms Clustering algorithms
Distortion
Entropy
graph clustering
Image registration
Image sequences
Microscopic image registration
Microscopy
minimum spanning tree
time sequence imaging
Two dimensional displays
Title A two-stage minimum spanning tree (MST) based clustering algorithm for 2D deformable registration of time sequenced images
URI https://ieeexplore.ieee.org/document/8296526
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwFA7bnnyal4l3zoMPCnaXpG3aR5kOJ0wGKuxtJCenc7itoi3Cfr1J100UH3xqaSEJSdPz5Vy-j7FzJJTWqgeekrH0_EgFXoyB8oQWWnKSCS9cA4OH8O7Zvx8Fowq72tTCEFGRfEZNd1vE8k2KuXOVtSIehwEPq6xqD26rWq2NP8V2aKFIe3PYcjwyZRSz045b_W5_6BK5ZLNs5IeaSmFMenU2WA9jlUPy2swz3cTlL4bG_45zmzW-y_ZguDFIO6xCi11WL3EmlLv4Y48tryH7TD2LCycEjltkns_B_lkK9SJwYWq4GDw-XYIzcQZwljs2BfdOzSbp-zR7mYPFusBvwFABevWMwEk8rEl4IU3AqdbDOlPbwHRue_tosOfe7VP3zis1GLypBRaZh1GsI4oTQmESVBGpUAp7dcDQyNhwjKRCF6PnqDoCQ678jkYTSp-ojST2WW2RLuiAgdO5tohCiFByH7WIZBJS7KPhAXbaQh-yPTeV47cVzca4nMWjvx8fsy23nKt0rxNWy95zOrX4INNnxYfxBeFyuyc
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF58HPTkG9_OwYOCqc1ukk2O4oNWrQhW8FZ2Zye12DZiE4T-enfTtKJ48JSQQHbZPObLzDffx9gxEkob1UNPyUR6QaxCL8FQeUILLTnJlJepgdZD1HgObl_Clzl2NuuFIaKSfEY1t1vW8k2GhUuVncc8iUIezbNFG_dDf9KtNcuo2CEtGKnPfreckkxVx_TryXnzsvnoqFyyVl3mh59KGU5uVlhrOpEJi-StVuS6huNfGo3_nekq2_xu3IPHWUhaY3M0XGcrFdKE6j0ebbDxBeSfmWeRYZfAqYsMigHYb0vpXwSuUA0nraf2KbggZwD7hdNTcOdUv5t99PLXAVi0C_wKDJWwV_cJnMnDVIYXshScbz1MudoGegM72miTPd9cty8bXuXC4PUstMg9jBMdU5ISCpOiiklFUtitg4ZGJoZjLBW6Kj1H5QuMuAp8jSaSAVEdSWyxhWE2pG0GzunaYgohIskD1CKWaURJgIaH6NeF3mEbbik77xOhjU61irt_Hz5iS412675z33y422PL7tZOyF_7bCH_KOjAooVcH5YPyRfP7b5w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2017+IEEE+International+Conference+on+Image+Processing+%28ICIP%29&rft.atitle=A+two-stage+minimum+spanning+tree+%28MST%29+based+clustering+algorithm+for+2D+deformable+registration+of+time+sequenced+images&rft.au=Saha%2C+Baidya+Nath&rft.au=Ray%2C+Nilanjan&rft.au=McArdle%2C+Sara&rft.au=Ley%2C+Klaus&rft.date=2017-09-01&rft.pub=IEEE&rft.eissn=2381-8549&rft.spage=1472&rft.epage=1476&rft_id=info:doi/10.1109%2FICIP.2017.8296526&rft.externalDocID=8296526