A two-stage minimum spanning tree (MST) based clustering algorithm for 2D deformable registration of time sequenced images
Significant cardiac and respiratory motion of the living subject, occasional spells of defocus, drifts in the field of view, and long image sequences make the registration of in-vivo microscopy image sequences used in atherosclerosis study an onerous task. In this study we developed and implemented...
Saved in:
Published in | 2017 IEEE International Conference on Image Processing (ICIP) pp. 1472 - 1476 |
---|---|
Main Authors | , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.09.2017
|
Subjects | |
Online Access | Get full text |
ISSN | 2381-8549 |
DOI | 10.1109/ICIP.2017.8296526 |
Cover
Loading…
Abstract | Significant cardiac and respiratory motion of the living subject, occasional spells of defocus, drifts in the field of view, and long image sequences make the registration of in-vivo microscopy image sequences used in atherosclerosis study an onerous task. In this study we developed and implemented a novel Minimum Spanning Tree (MST)-based clustering method for image sequence registration that first constructs a minimum spanning tree for the input image sequence. The spanning tree re-orders the images in such a way where poor quality images appear at the end of the sequence. Then the spanning tree is clustered into several groups based on the similarity of the images. Subsequently deformable registration is conducted locally within the group with respect to the local anchor image selected automatically from the images in the group. After that coarse registration is performed to find the global anchor and then a deformable registration is performed globally to incorporate larger drift and distortion. Two-stage deformable registration incrementally incorporates larger drifts and distortions present in the longer sequence. Our algorithm involves very few tuning parameters, the optimal value of these parameters can be easily learned from data. Our method outperforms other methods on microscopy image sequences of mouse arteries. |
---|---|
AbstractList | Significant cardiac and respiratory motion of the living subject, occasional spells of defocus, drifts in the field of view, and long image sequences make the registration of in-vivo microscopy image sequences used in atherosclerosis study an onerous task. In this study we developed and implemented a novel Minimum Spanning Tree (MST)-based clustering method for image sequence registration that first constructs a minimum spanning tree for the input image sequence. The spanning tree re-orders the images in such a way where poor quality images appear at the end of the sequence. Then the spanning tree is clustered into several groups based on the similarity of the images. Subsequently deformable registration is conducted locally within the group with respect to the local anchor image selected automatically from the images in the group. After that coarse registration is performed to find the global anchor and then a deformable registration is performed globally to incorporate larger drift and distortion. Two-stage deformable registration incrementally incorporates larger drifts and distortions present in the longer sequence. Our algorithm involves very few tuning parameters, the optimal value of these parameters can be easily learned from data. Our method outperforms other methods on microscopy image sequences of mouse arteries. |
Author | Ray, Nilanjan Saha, Baidya Nath Ley, Klaus McArdle, Sara |
Author_xml | – sequence: 1 givenname: Baidya Nath surname: Saha fullname: Saha, Baidya Nath email: baidya.saha@cimat.mx organization: Centro de Investig. en Mat., Monterrey, Mexico – sequence: 2 givenname: Nilanjan surname: Ray fullname: Ray, Nilanjan email: nrayl@ualberta.ca organization: Department of Computing Science, University of Alberta, Edmonton, Alberta, Canada, T6G 2E8 – sequence: 3 givenname: Sara surname: McArdle fullname: McArdle, Sara email: smcardle@liai.org organization: La Jolla Institute for Allergy & Immunology, La Jolla, CA, USA – sequence: 4 givenname: Klaus surname: Ley fullname: Ley, Klaus email: klaus@liai.org organization: La Jolla Institute for Allergy & Immunology, La Jolla, CA, USA |
BookMark | eNotUEtPwzAYCwgktrEfgLjkCIeOPNomOU7jVWkIJMZ5StOvJahNR5IJwa8niJ1syZZteYpO3OgAoQtKFpQSdVOtqpcFI1QsJFNlwcojNFdC0oIowqgo5DGaMC5pJotcnaFpCB-EJD-nE_SzxPFrzELUHeDBOjvsBxx22jnrOhw9AL56et1c41oHaLDp9yGC_9N0343exvcBt6PH7BY3kMig6x6wh86G6HW0o8Nji6MdAAf43IMzKcUOqS2co9NW9wHmB5yht_u7zeoxWz8_VKvlOrNpe8yMVLUE1YLhTWu0BF0KnpAqxhuhGmak0CZnRDKjKTcl0zmtTVOKHIAY4DN0-Z9rAWC786ndf28PV_FfFTFhZg |
ContentType | Conference Proceeding |
DBID | 6IE 6IH CBEJK RIE RIO |
DOI | 10.1109/ICIP.2017.8296526 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences |
EISBN | 9781509021758 1509021752 |
EISSN | 2381-8549 |
EndPage | 1476 |
ExternalDocumentID | 8296526 |
Genre | orig-research |
GroupedDBID | 29O 6IE 6IF 6IH 6IK 6IL 6IM 6IN AAJGR AAWTH ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IPLJI M43 OCL RIE RIL RIO RNS |
ID | FETCH-LOGICAL-i175t-c89b8e9fec3dfca8ea673ca81923d79d2c87ac42082ca13c62a41bcd674ee0ce3 |
IEDL.DBID | RIE |
IngestDate | Wed Aug 27 02:37:10 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i175t-c89b8e9fec3dfca8ea673ca81923d79d2c87ac42082ca13c62a41bcd674ee0ce3 |
PageCount | 5 |
ParticipantIDs | ieee_primary_8296526 |
PublicationCentury | 2000 |
PublicationDate | 2017-Sept. |
PublicationDateYYYYMMDD | 2017-09-01 |
PublicationDate_xml | – month: 09 year: 2017 text: 2017-Sept. |
PublicationDecade | 2010 |
PublicationTitle | 2017 IEEE International Conference on Image Processing (ICIP) |
PublicationTitleAbbrev | ICIP |
PublicationYear | 2017 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0020131 ssj0002269320 |
Score | 2.0094125 |
Snippet | Significant cardiac and respiratory motion of the living subject, occasional spells of defocus, drifts in the field of view, and long image sequences make the... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 1472 |
SubjectTerms | Clustering algorithms Distortion Entropy graph clustering Image registration Image sequences Microscopic image registration Microscopy minimum spanning tree time sequence imaging Two dimensional displays |
Title | A two-stage minimum spanning tree (MST) based clustering algorithm for 2D deformable registration of time sequenced images |
URI | https://ieeexplore.ieee.org/document/8296526 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwFA7bnnyal4l3zoMPCnaXpG3aR5kOJ0wGKuxtJCenc7itoi3Cfr1J100UH3xqaSEJSdPz5Vy-j7FzJJTWqgeekrH0_EgFXoyB8oQWWnKSCS9cA4OH8O7Zvx8Fowq72tTCEFGRfEZNd1vE8k2KuXOVtSIehwEPq6xqD26rWq2NP8V2aKFIe3PYcjwyZRSz045b_W5_6BK5ZLNs5IeaSmFMenU2WA9jlUPy2swz3cTlL4bG_45zmzW-y_ZguDFIO6xCi11WL3EmlLv4Y48tryH7TD2LCycEjltkns_B_lkK9SJwYWq4GDw-XYIzcQZwljs2BfdOzSbp-zR7mYPFusBvwFABevWMwEk8rEl4IU3AqdbDOlPbwHRue_tosOfe7VP3zis1GLypBRaZh1GsI4oTQmESVBGpUAp7dcDQyNhwjKRCF6PnqDoCQ678jkYTSp-ojST2WW2RLuiAgdO5tohCiFByH7WIZBJS7KPhAXbaQh-yPTeV47cVzca4nMWjvx8fsy23nKt0rxNWy95zOrX4INNnxYfxBeFyuyc |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF58HPTkG9_OwYOCqc1ukk2O4oNWrQhW8FZ2Zye12DZiE4T-enfTtKJ48JSQQHbZPObLzDffx9gxEkob1UNPyUR6QaxCL8FQeUILLTnJlJepgdZD1HgObl_Clzl2NuuFIaKSfEY1t1vW8k2GhUuVncc8iUIezbNFG_dDf9KtNcuo2CEtGKnPfreckkxVx_TryXnzsvnoqFyyVl3mh59KGU5uVlhrOpEJi-StVuS6huNfGo3_nekq2_xu3IPHWUhaY3M0XGcrFdKE6j0ebbDxBeSfmWeRYZfAqYsMigHYb0vpXwSuUA0nraf2KbggZwD7hdNTcOdUv5t99PLXAVi0C_wKDJWwV_cJnMnDVIYXshScbz1MudoGegM72miTPd9cty8bXuXC4PUstMg9jBMdU5ISCpOiiklFUtitg4ZGJoZjLBW6Kj1H5QuMuAp8jSaSAVEdSWyxhWE2pG0GzunaYgohIskD1CKWaURJgIaH6NeF3mEbbik77xOhjU61irt_Hz5iS412675z33y422PL7tZOyF_7bCH_KOjAooVcH5YPyRfP7b5w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2017+IEEE+International+Conference+on+Image+Processing+%28ICIP%29&rft.atitle=A+two-stage+minimum+spanning+tree+%28MST%29+based+clustering+algorithm+for+2D+deformable+registration+of+time+sequenced+images&rft.au=Saha%2C+Baidya+Nath&rft.au=Ray%2C+Nilanjan&rft.au=McArdle%2C+Sara&rft.au=Ley%2C+Klaus&rft.date=2017-09-01&rft.pub=IEEE&rft.eissn=2381-8549&rft.spage=1472&rft.epage=1476&rft_id=info:doi/10.1109%2FICIP.2017.8296526&rft.externalDocID=8296526 |