Short-term load forecasting model based on deep neural network
The short-term load forecasting model based on deep neural network is constructed in this paper. The forecasting model contains multiple hidden layers, which can extract the deep characteristics of the data. This allows the deep neural network to contain more information, extends the modeling abilit...
Saved in:
Published in | 2017 2nd International Conference on Power and Renewable Energy (ICPRE) pp. 589 - 591 |
---|---|
Main Authors | , , , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.09.2017
|
Subjects | |
Online Access | Get full text |
DOI | 10.1109/ICPRE.2017.8390603 |
Cover
Loading…
Abstract | The short-term load forecasting model based on deep neural network is constructed in this paper. The forecasting model contains multiple hidden layers, which can extract the deep characteristics of the data. This allows the deep neural network to contain more information, extends the modeling ability of neural networks, and improves the predictive ability of the model. Genetic algorithm is used to optimize the weights and the thresholds of deep neural network. Using actual load data of electric power system for simulation test, compared with the conventional BP neural network, the test results show that the short-term load forecasting model based on deep neural network has good prediction effect. |
---|---|
AbstractList | The short-term load forecasting model based on deep neural network is constructed in this paper. The forecasting model contains multiple hidden layers, which can extract the deep characteristics of the data. This allows the deep neural network to contain more information, extends the modeling ability of neural networks, and improves the predictive ability of the model. Genetic algorithm is used to optimize the weights and the thresholds of deep neural network. Using actual load data of electric power system for simulation test, compared with the conventional BP neural network, the test results show that the short-term load forecasting model based on deep neural network has good prediction effect. |
Author | Yao, Li Hui, Xue Qun, Wang Yingbin, Zhang Lei, Shi Zhisheng, Zhang |
Author_xml | – sequence: 1 givenname: Xue surname: Hui fullname: Hui, Xue organization: Zaozhuang Electric Power Company, Zaozhuang 277100, Shandong Province, China – sequence: 2 givenname: Wang surname: Qun fullname: Qun, Wang organization: Zaozhuang Electric Power Company, Zaozhuang 277100, Shandong Province, China – sequence: 3 givenname: Li surname: Yao fullname: Yao, Li organization: Zaozhuang Electric Power Company, Zaozhuang 277100, Shandong Province, China – sequence: 4 givenname: Zhang surname: Yingbin fullname: Yingbin, Zhang organization: Zaozhuang Electric Power Company, Zaozhuang 277100, Shandong Province, China – sequence: 5 givenname: Shi surname: Lei fullname: Lei, Shi organization: Zaozhuang Electric Power Company, Zaozhuang 277100, Shandong Province, China – sequence: 6 givenname: Zhang surname: Zhisheng fullname: Zhisheng, Zhang organization: School of Automation Engineering, Qingdao University, Qingdao, Shandong, China |
BookMark | eNotj11LwzAUQCMo6Ob-gL7kD7Te2yzp7YsgZc7BQPHjeaTJjVbbZqQV8d87cE-H83LgzMTpEAcW4gohR4TqZlM_Pa_yArDMSVVgQJ2IGWpFpkBt6FwsxvETAApDCsvqQty-fMQ0ZROnXnbRehliYmfHqR3eZR89d7KxI3sZB-mZ93Lg72S7A6afmL4uxVmw3ciLI-fi7X71Wj9k28f1pr7bZi2WesocKSaniKxHYz1ov1yiDgdDZA6OC6ock3FlE8BbsIVzjdYWnaEApNVcXP93W2be7VPb2_S7Oy6qP4teSfk |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/ICPRE.2017.8390603 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE/IET Electronic Library (IEL) (UW System Shared) IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISBN | 1538621568 9781538621561 |
EndPage | 591 |
ExternalDocumentID | 8390603 |
Genre | orig-research |
GroupedDBID | 6IE 6IF 6IL 6IN AAJGR AAWTH ABLEC ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK IEGSK OCL RIE RIL |
ID | FETCH-LOGICAL-i175t-c83e8c388ad16ad05d4415fad111eefce289ce86c7bf0da0a2ccb55a1c68f0853 |
IEDL.DBID | RIE |
IngestDate | Wed Aug 27 02:49:49 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i175t-c83e8c388ad16ad05d4415fad111eefce289ce86c7bf0da0a2ccb55a1c68f0853 |
PageCount | 3 |
ParticipantIDs | ieee_primary_8390603 |
PublicationCentury | 2000 |
PublicationDate | 2017-Sept. |
PublicationDateYYYYMMDD | 2017-09-01 |
PublicationDate_xml | – month: 09 year: 2017 text: 2017-Sept. |
PublicationDecade | 2010 |
PublicationTitle | 2017 2nd International Conference on Power and Renewable Energy (ICPRE) |
PublicationTitleAbbrev | ICPRE |
PublicationYear | 2017 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0002683179 |
Score | 1.7278392 |
Snippet | The short-term load forecasting model based on deep neural network is constructed in this paper. The forecasting model contains multiple hidden layers, which... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 589 |
SubjectTerms | Biological neural networks deep neural network electric power system Forecasting genetic algorithm Load forecasting Load modeling Predictive models short-term load forecasting |
Title | Short-term load forecasting model based on deep neural network |
URI | https://ieeexplore.ieee.org/document/8390603 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED6VTrDwaBFveWAkqZ2H4y4sFVVBKkKCSt0qxz4LRJVUkC78es5JWx5iYIpjyUpiO_nuu3x3B3AZcedQOAxsRHQ1MU4E_VhI2ssmEbnfR7l3DYzv5WiS3E3TaQuuNrEwiFiLzzD0zfpfvi3N0rvKegTmXPrUnltE3JpYrY0_JZKKoLC_jovh_d7tgB7Ci7eycDXwRwWVGkCGuzBeX7rRjbyGyyoPzcevrIz_vbc96H6F6rGHDQjtQwuLA9j5lmWwA9ePz2RjB_4bzOaltozsVDT63QueWV0Jh3kss6wsmEVcMJ_jUs_pUCvEuzAZ3jwNRsGqbELwQrZAFRgVozKxUtoKqS1PredMjs6EQHQGiWMZVNJkueNWcx0Zk6epFkYqRxZYfAjtoizwCBi3mZUJV5nCOElQq5RecJcQRaJWjNkxdPxMzBZNZozZahJO_u4-hW2_Go1C6wza1dsSzwnSq_yiXstPt8ehOg |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELaqMgALjxbxxgMjSZ3GcZyFpaJqoa2QaKVulWOfBaJKKkgXfj3npC0PMTDFsWQlsZ18d5fvviPkus2shcCCZ9rornJtAy8JA4F7WfMgdfsodaGB4Uj0Jvx-Gk1r5GaTCwMAJfkMfNcs_-WbXC9dqKyFYM6Ek_bcQtznSZWttYmotIVEMEzWmTEsafU7-BiOvhX7q6E_aqiUENLdI8P1xSvmyKu_LFJff_zSZfzv3e2T5leyHn3cwNABqUF2SHa_6Qw2yO3TM1rZnvsK03muDEVLFbR6d5RnWtbCoQ7NDM0zagAW1KlcqjkeSo54k0y6d-NOz1sVTvBe0BooPC1DkDqUUplAKMMi47wmi2dBAGA1oJelQQodp5YZxVRb6zSKVKCFtGiDhUeknuUZHBPKTGwEZzKWEHIOSkb4iluOThK2QohPSMPNxGxRaWPMVpNw-nf3FdnujYeD2aA_ejgjO25lKr7WOakXb0u4QIAv0styXT8BX7Ckig |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2017+2nd+International+Conference+on+Power+and+Renewable+Energy+%28ICPRE%29&rft.atitle=Short-term+load+forecasting+model+based+on+deep+neural+network&rft.au=Hui%2C+Xue&rft.au=Qun%2C+Wang&rft.au=Yao%2C+Li&rft.au=Yingbin%2C+Zhang&rft.date=2017-09-01&rft.pub=IEEE&rft.spage=589&rft.epage=591&rft_id=info:doi/10.1109%2FICPRE.2017.8390603&rft.externalDocID=8390603 |