Short-term load forecasting model based on deep neural network

The short-term load forecasting model based on deep neural network is constructed in this paper. The forecasting model contains multiple hidden layers, which can extract the deep characteristics of the data. This allows the deep neural network to contain more information, extends the modeling abilit...

Full description

Saved in:
Bibliographic Details
Published in2017 2nd International Conference on Power and Renewable Energy (ICPRE) pp. 589 - 591
Main Authors Hui, Xue, Qun, Wang, Yao, Li, Yingbin, Zhang, Lei, Shi, Zhisheng, Zhang
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.09.2017
Subjects
Online AccessGet full text
DOI10.1109/ICPRE.2017.8390603

Cover

Loading…
Abstract The short-term load forecasting model based on deep neural network is constructed in this paper. The forecasting model contains multiple hidden layers, which can extract the deep characteristics of the data. This allows the deep neural network to contain more information, extends the modeling ability of neural networks, and improves the predictive ability of the model. Genetic algorithm is used to optimize the weights and the thresholds of deep neural network. Using actual load data of electric power system for simulation test, compared with the conventional BP neural network, the test results show that the short-term load forecasting model based on deep neural network has good prediction effect.
AbstractList The short-term load forecasting model based on deep neural network is constructed in this paper. The forecasting model contains multiple hidden layers, which can extract the deep characteristics of the data. This allows the deep neural network to contain more information, extends the modeling ability of neural networks, and improves the predictive ability of the model. Genetic algorithm is used to optimize the weights and the thresholds of deep neural network. Using actual load data of electric power system for simulation test, compared with the conventional BP neural network, the test results show that the short-term load forecasting model based on deep neural network has good prediction effect.
Author Yao, Li
Hui, Xue
Qun, Wang
Yingbin, Zhang
Lei, Shi
Zhisheng, Zhang
Author_xml – sequence: 1
  givenname: Xue
  surname: Hui
  fullname: Hui, Xue
  organization: Zaozhuang Electric Power Company, Zaozhuang 277100, Shandong Province, China
– sequence: 2
  givenname: Wang
  surname: Qun
  fullname: Qun, Wang
  organization: Zaozhuang Electric Power Company, Zaozhuang 277100, Shandong Province, China
– sequence: 3
  givenname: Li
  surname: Yao
  fullname: Yao, Li
  organization: Zaozhuang Electric Power Company, Zaozhuang 277100, Shandong Province, China
– sequence: 4
  givenname: Zhang
  surname: Yingbin
  fullname: Yingbin, Zhang
  organization: Zaozhuang Electric Power Company, Zaozhuang 277100, Shandong Province, China
– sequence: 5
  givenname: Shi
  surname: Lei
  fullname: Lei, Shi
  organization: Zaozhuang Electric Power Company, Zaozhuang 277100, Shandong Province, China
– sequence: 6
  givenname: Zhang
  surname: Zhisheng
  fullname: Zhisheng, Zhang
  organization: School of Automation Engineering, Qingdao University, Qingdao, Shandong, China
BookMark eNotj11LwzAUQCMo6Ob-gL7kD7Te2yzp7YsgZc7BQPHjeaTJjVbbZqQV8d87cE-H83LgzMTpEAcW4gohR4TqZlM_Pa_yArDMSVVgQJ2IGWpFpkBt6FwsxvETAApDCsvqQty-fMQ0ZROnXnbRehliYmfHqR3eZR89d7KxI3sZB-mZ93Lg72S7A6afmL4uxVmw3ciLI-fi7X71Wj9k28f1pr7bZi2WesocKSaniKxHYz1ov1yiDgdDZA6OC6ock3FlE8BbsIVzjdYWnaEApNVcXP93W2be7VPb2_S7Oy6qP4teSfk
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICPRE.2017.8390603
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE/IET Electronic Library (IEL) (UW System Shared)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 1538621568
9781538621561
EndPage 591
ExternalDocumentID 8390603
Genre orig-research
GroupedDBID 6IE
6IF
6IL
6IN
AAJGR
AAWTH
ABLEC
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
IEGSK
OCL
RIE
RIL
ID FETCH-LOGICAL-i175t-c83e8c388ad16ad05d4415fad111eefce289ce86c7bf0da0a2ccb55a1c68f0853
IEDL.DBID RIE
IngestDate Wed Aug 27 02:49:49 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-c83e8c388ad16ad05d4415fad111eefce289ce86c7bf0da0a2ccb55a1c68f0853
PageCount 3
ParticipantIDs ieee_primary_8390603
PublicationCentury 2000
PublicationDate 2017-Sept.
PublicationDateYYYYMMDD 2017-09-01
PublicationDate_xml – month: 09
  year: 2017
  text: 2017-Sept.
PublicationDecade 2010
PublicationTitle 2017 2nd International Conference on Power and Renewable Energy (ICPRE)
PublicationTitleAbbrev ICPRE
PublicationYear 2017
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0002683179
Score 1.7278392
Snippet The short-term load forecasting model based on deep neural network is constructed in this paper. The forecasting model contains multiple hidden layers, which...
SourceID ieee
SourceType Publisher
StartPage 589
SubjectTerms Biological neural networks
deep neural network
electric power system
Forecasting
genetic algorithm
Load forecasting
Load modeling
Predictive models
short-term load forecasting
Title Short-term load forecasting model based on deep neural network
URI https://ieeexplore.ieee.org/document/8390603
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED6VTrDwaBFveWAkqZ2H4y4sFVVBKkKCSt0qxz4LRJVUkC78es5JWx5iYIpjyUpiO_nuu3x3B3AZcedQOAxsRHQ1MU4E_VhI2ssmEbnfR7l3DYzv5WiS3E3TaQuuNrEwiFiLzzD0zfpfvi3N0rvKegTmXPrUnltE3JpYrY0_JZKKoLC_jovh_d7tgB7Ci7eycDXwRwWVGkCGuzBeX7rRjbyGyyoPzcevrIz_vbc96H6F6rGHDQjtQwuLA9j5lmWwA9ePz2RjB_4bzOaltozsVDT63QueWV0Jh3kss6wsmEVcMJ_jUs_pUCvEuzAZ3jwNRsGqbELwQrZAFRgVozKxUtoKqS1PredMjs6EQHQGiWMZVNJkueNWcx0Zk6epFkYqRxZYfAjtoizwCBi3mZUJV5nCOElQq5RecJcQRaJWjNkxdPxMzBZNZozZahJO_u4-hW2_Go1C6wza1dsSzwnSq_yiXstPt8ehOg
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELaqMgALjxbxxgMjSZ3GcZyFpaJqoa2QaKVulWOfBaJKKkgXfj3npC0PMTDFsWQlsZ18d5fvviPkus2shcCCZ9rornJtAy8JA4F7WfMgdfsodaGB4Uj0Jvx-Gk1r5GaTCwMAJfkMfNcs_-WbXC9dqKyFYM6Ek_bcQtznSZWttYmotIVEMEzWmTEsafU7-BiOvhX7q6E_aqiUENLdI8P1xSvmyKu_LFJff_zSZfzv3e2T5leyHn3cwNABqUF2SHa_6Qw2yO3TM1rZnvsK03muDEVLFbR6d5RnWtbCoQ7NDM0zagAW1KlcqjkeSo54k0y6d-NOz1sVTvBe0BooPC1DkDqUUplAKMMi47wmi2dBAGA1oJelQQodp5YZxVRb6zSKVKCFtGiDhUeknuUZHBPKTGwEZzKWEHIOSkb4iluOThK2QohPSMPNxGxRaWPMVpNw-nf3FdnujYeD2aA_ejgjO25lKr7WOakXb0u4QIAv0styXT8BX7Ckig
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2017+2nd+International+Conference+on+Power+and+Renewable+Energy+%28ICPRE%29&rft.atitle=Short-term+load+forecasting+model+based+on+deep+neural+network&rft.au=Hui%2C+Xue&rft.au=Qun%2C+Wang&rft.au=Yao%2C+Li&rft.au=Yingbin%2C+Zhang&rft.date=2017-09-01&rft.pub=IEEE&rft.spage=589&rft.epage=591&rft_id=info:doi/10.1109%2FICPRE.2017.8390603&rft.externalDocID=8390603