Comparative Study of Color Image Segmentation by the Seeded Region Growing Algorithm

The choice of color representation can have distinguishable perceptual differences in the subject image which raises the following question: To what extent color representation can affect image processing results? In this paper, we study the effect of the RGB and HSV color representations on the seg...

Full description

Saved in:
Bibliographic Details
Published in2018 IEEE 5th International Congress on Information Science and Technology (CiSt) pp. 279 - 284
Main Authors Charifi, Rajaa, Essbai, Najia, Mansouri, Anass, Zennayi, Yahya
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.10.2018
Subjects
Online AccessGet full text
ISSN2327-1884
DOI10.1109/CIST.2018.8596399

Cover

Abstract The choice of color representation can have distinguishable perceptual differences in the subject image which raises the following question: To what extent color representation can affect image processing results? In this paper, we study the effect of the RGB and HSV color representations on the segmentation result of the famous seeded region growing (SRG)algorithm. The implemented method involves three steps: 1) The automated seed selection, based on both color and space features,2) The region growing, based on the neighborhood similarity measured by the Euclidean distance, and finally,3) the region merging phase, introduced to overcome the over-segmentation issue and improve the results' accuracy. We used three metrics from the literature to evaluate the performances of our algorithm on both color spaces. The segmentation results were compared by combining the performance measures taken from a sample of images from the Berkeley dataset. The algorithm showcased more accurate results and consumed less execution time in the HSV color space compared to the RGB one.
AbstractList The choice of color representation can have distinguishable perceptual differences in the subject image which raises the following question: To what extent color representation can affect image processing results? In this paper, we study the effect of the RGB and HSV color representations on the segmentation result of the famous seeded region growing (SRG)algorithm. The implemented method involves three steps: 1) The automated seed selection, based on both color and space features,2) The region growing, based on the neighborhood similarity measured by the Euclidean distance, and finally,3) the region merging phase, introduced to overcome the over-segmentation issue and improve the results' accuracy. We used three metrics from the literature to evaluate the performances of our algorithm on both color spaces. The segmentation results were compared by combining the performance measures taken from a sample of images from the Berkeley dataset. The algorithm showcased more accurate results and consumed less execution time in the HSV color space compared to the RGB one.
Author Essbai, Najia
Charifi, Rajaa
Zennayi, Yahya
Mansouri, Anass
Author_xml – sequence: 1
  givenname: Rajaa
  surname: Charifi
  fullname: Charifi, Rajaa
  email: rajaa.charifi@usmba.ac.ma
  organization: Sch. of Sci. & Technol., Univ. Sidi Mohammed BenAbdellah, Fes, Morocco
– sequence: 2
  givenname: Najia
  surname: Essbai
  fullname: Essbai, Najia
  email: najia.essbai@usmba.ac.ma
  organization: Sch. of Sci. & Technol., Univ. Sidi Mohammed BenAbdellah, Fes, Morocco
– sequence: 3
  givenname: Anass
  surname: Mansouri
  fullname: Mansouri, Anass
  email: anas.mansouri@usmba.ac.ma
  organization: Sch. of Sci. & Technol., Univ. Sidi Mohammed BenAbdellah, Fes, Morocco
– sequence: 4
  givenname: Yahya
  surname: Zennayi
  fullname: Zennayi, Yahya
  email: y.zennayi@mascir.com
  organization: Embaded Syst. Dept., Rabat, Morocco
BookMark eNotkM9Kw0AYxFdRsK19APGyL5C4m_2TL8cStAYKgo3nskm-pCtJtmyikrdvij0Mw_wY5jBLcte7Hgl54izknCUvabbPw4hxCEElWiTJDVlyJUBLAUrdkkUkojjgAPKBrIfhmzEm5pRIsSB56rqT8Wa0v0j34081UVfT1LXO06wzzQyx6bAf54braTHR8XhhWGFFP7G5wK13f7Zv6KZtnLfjsXsk97VpB1xffUW-3l7z9D3YfWyzdLMLLI_VGJQxYGlqXSkoeRlr1AJYFUvFI9TSgACAChSPpeRMYF0gVwmwQjDQs1CsyPP_rkXEw8nbzvjpcD1BnAGg21GJ
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/CIST.2018.8596399
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 1538643855
9781538643853
EISSN 2327-1884
EndPage 284
ExternalDocumentID 8596399
Genre orig-research
GroupedDBID 6IE
6IF
6IK
6IL
6IN
AAJGR
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IPLJI
OCL
RIE
RIL
ID FETCH-LOGICAL-i175t-c78ecaf6d58c1c76e6380d74512e64a83888d851744103efbe15980b3086308e3
IEDL.DBID RIE
IngestDate Wed Aug 27 05:49:43 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-c78ecaf6d58c1c76e6380d74512e64a83888d851744103efbe15980b3086308e3
PageCount 6
ParticipantIDs ieee_primary_8596399
PublicationCentury 2000
PublicationDate 2018-October
PublicationDateYYYYMMDD 2018-10-01
PublicationDate_xml – month: 10
  year: 2018
  text: 2018-October
PublicationDecade 2010
PublicationTitle 2018 IEEE 5th International Congress on Information Science and Technology (CiSt)
PublicationTitleAbbrev CIST
PublicationYear 2018
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0003188943
ssj0002684084
Score 1.6902649
Snippet The choice of color representation can have distinguishable perceptual differences in the subject image which raises the following question: To what extent...
SourceID ieee
SourceType Publisher
StartPage 279
SubjectTerms Color image Segmentation
Image color analysis
Image segmentation
Indexes
Mean Square Error
Measurement
Merging
Peak Signal to Noise Ratio
PSNR
region growing
region merging
seed selection
Structural Similarity Index
Title Comparative Study of Color Image Segmentation by the Seeded Region Growing Algorithm
URI https://ieeexplore.ieee.org/document/8596399
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED61nWDh0SLe8sBI0oQ4iT2iiFKQQIi2Urcqji-lgiaoSofy6zknoQXEwGAptpTTya-7s7_7DHCBwks1R8-KHYwtrh1pqYRLK5Ui5hKDFHXJ9vkY9Ef8fuyPG3C5zoVBxBJ8hrb5LO_ydZ4szVFZV_jSGNQmNGmaVbla6_OUkrWkzrk0dZqrhlq8vsh0HdmN7gZDg-USdi3nx4MqpT3p7cDDlyYVjOTVXhbKTj5-kTT-V9Vd6Gwy99jT2ibtQQOzfdj-RjrYhmG0IfxmBka4YnnKItoEF-xuTtsLG-B0XqckZUytGPmI1IYaNXtGg19mtxS8kzB2_TbNF7PiZd6BUe9mGPWt-m0Fa0YOQ2ElocAkTgPti8RNwgBpHTo65GT_MeCx8Cgy1sLQWHPX8TBVSH6PcJRHIRAV9A6gleUZHgLzwpAUkI5U9CdHLq9CEkmOUawCN5b-EbRN_0zeK_qMSd01x383n8CWGaMKL3cKrWKxxDOy-4U6Lwf8E9BqrBA
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT4MwFG7mPKgXf2zG3_bgURiTAu3REOem22IcS3ZbKH3MRQdmYYf51_sKuKnx4IEEmvDy0kLf99rvfSXkCrgdKwa2EVoQGkxZwpARE0YseMgEuDGoXO2z77aH7GHkjCrkelULAwA5-QxMfZvv5as0WuilsgZ3hA6oG2QT4z5zimqt1YpKrltSVl3qZ_xatbh4uZXZtETD7wwCzebiZmnpx5EqeURp7ZLely8FkeTVXGTSjD5-yTT-19k9Ul_X7tGnVVTaJxVIDsjON9nBGgn8teQ31UTCJU1j6uM0OKedGU4wdACTWVmUlFC5pIgSsQ0UKPoMmsFM7zF9R2P09m2SzqfZy6xOhq27wG8b5ekKxhQhQ2ZEHocojF3l8KgZeS7gn2gpjyECAJeF3MbcWHEtZM2alg2xBEQ-3JI2JkF4gX1IqkmawBGhtuehA8ISEt9kwMSNhyYRGoXSbYbCOSY13T_j90JAY1x2zcnfzZdkqx30uuNup_94Srb1eBXsuTNSzeYLOEcUkMmLfPA_AQVur10
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2018+IEEE+5th+International+Congress+on+Information+Science+and+Technology+%28CiSt%29&rft.atitle=Comparative+Study+of+Color+Image+Segmentation+by+the+Seeded+Region+Growing+Algorithm&rft.au=Charifi%2C+Rajaa&rft.au=Essbai%2C+Najia&rft.au=Mansouri%2C+Anass&rft.au=Zennayi%2C+Yahya&rft.date=2018-10-01&rft.pub=IEEE&rft.eissn=2327-1884&rft.spage=279&rft.epage=284&rft_id=info:doi/10.1109%2FCIST.2018.8596399&rft.externalDocID=8596399