Comparative Study of Color Image Segmentation by the Seeded Region Growing Algorithm
The choice of color representation can have distinguishable perceptual differences in the subject image which raises the following question: To what extent color representation can affect image processing results? In this paper, we study the effect of the RGB and HSV color representations on the seg...
Saved in:
Published in | 2018 IEEE 5th International Congress on Information Science and Technology (CiSt) pp. 279 - 284 |
---|---|
Main Authors | , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.10.2018
|
Subjects | |
Online Access | Get full text |
ISSN | 2327-1884 |
DOI | 10.1109/CIST.2018.8596399 |
Cover
Abstract | The choice of color representation can have distinguishable perceptual differences in the subject image which raises the following question: To what extent color representation can affect image processing results? In this paper, we study the effect of the RGB and HSV color representations on the segmentation result of the famous seeded region growing (SRG)algorithm. The implemented method involves three steps: 1) The automated seed selection, based on both color and space features,2) The region growing, based on the neighborhood similarity measured by the Euclidean distance, and finally,3) the region merging phase, introduced to overcome the over-segmentation issue and improve the results' accuracy. We used three metrics from the literature to evaluate the performances of our algorithm on both color spaces. The segmentation results were compared by combining the performance measures taken from a sample of images from the Berkeley dataset. The algorithm showcased more accurate results and consumed less execution time in the HSV color space compared to the RGB one. |
---|---|
AbstractList | The choice of color representation can have distinguishable perceptual differences in the subject image which raises the following question: To what extent color representation can affect image processing results? In this paper, we study the effect of the RGB and HSV color representations on the segmentation result of the famous seeded region growing (SRG)algorithm. The implemented method involves three steps: 1) The automated seed selection, based on both color and space features,2) The region growing, based on the neighborhood similarity measured by the Euclidean distance, and finally,3) the region merging phase, introduced to overcome the over-segmentation issue and improve the results' accuracy. We used three metrics from the literature to evaluate the performances of our algorithm on both color spaces. The segmentation results were compared by combining the performance measures taken from a sample of images from the Berkeley dataset. The algorithm showcased more accurate results and consumed less execution time in the HSV color space compared to the RGB one. |
Author | Essbai, Najia Charifi, Rajaa Zennayi, Yahya Mansouri, Anass |
Author_xml | – sequence: 1 givenname: Rajaa surname: Charifi fullname: Charifi, Rajaa email: rajaa.charifi@usmba.ac.ma organization: Sch. of Sci. & Technol., Univ. Sidi Mohammed BenAbdellah, Fes, Morocco – sequence: 2 givenname: Najia surname: Essbai fullname: Essbai, Najia email: najia.essbai@usmba.ac.ma organization: Sch. of Sci. & Technol., Univ. Sidi Mohammed BenAbdellah, Fes, Morocco – sequence: 3 givenname: Anass surname: Mansouri fullname: Mansouri, Anass email: anas.mansouri@usmba.ac.ma organization: Sch. of Sci. & Technol., Univ. Sidi Mohammed BenAbdellah, Fes, Morocco – sequence: 4 givenname: Yahya surname: Zennayi fullname: Zennayi, Yahya email: y.zennayi@mascir.com organization: Embaded Syst. Dept., Rabat, Morocco |
BookMark | eNotkM9Kw0AYxFdRsK19APGyL5C4m_2TL8cStAYKgo3nskm-pCtJtmyikrdvij0Mw_wY5jBLcte7Hgl54izknCUvabbPw4hxCEElWiTJDVlyJUBLAUrdkkUkojjgAPKBrIfhmzEm5pRIsSB56rqT8Wa0v0j34081UVfT1LXO06wzzQyx6bAf54braTHR8XhhWGFFP7G5wK13f7Zv6KZtnLfjsXsk97VpB1xffUW-3l7z9D3YfWyzdLMLLI_VGJQxYGlqXSkoeRlr1AJYFUvFI9TSgACAChSPpeRMYF0gVwmwQjDQs1CsyPP_rkXEw8nbzvjpcD1BnAGg21GJ |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/CIST.2018.8596399 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISBN | 1538643855 9781538643853 |
EISSN | 2327-1884 |
EndPage | 284 |
ExternalDocumentID | 8596399 |
Genre | orig-research |
GroupedDBID | 6IE 6IF 6IK 6IL 6IN AAJGR AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IPLJI OCL RIE RIL |
ID | FETCH-LOGICAL-i175t-c78ecaf6d58c1c76e6380d74512e64a83888d851744103efbe15980b3086308e3 |
IEDL.DBID | RIE |
IngestDate | Wed Aug 27 05:49:43 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i175t-c78ecaf6d58c1c76e6380d74512e64a83888d851744103efbe15980b3086308e3 |
PageCount | 6 |
ParticipantIDs | ieee_primary_8596399 |
PublicationCentury | 2000 |
PublicationDate | 2018-October |
PublicationDateYYYYMMDD | 2018-10-01 |
PublicationDate_xml | – month: 10 year: 2018 text: 2018-October |
PublicationDecade | 2010 |
PublicationTitle | 2018 IEEE 5th International Congress on Information Science and Technology (CiSt) |
PublicationTitleAbbrev | CIST |
PublicationYear | 2018 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0003188943 ssj0002684084 |
Score | 1.6902649 |
Snippet | The choice of color representation can have distinguishable perceptual differences in the subject image which raises the following question: To what extent... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 279 |
SubjectTerms | Color image Segmentation Image color analysis Image segmentation Indexes Mean Square Error Measurement Merging Peak Signal to Noise Ratio PSNR region growing region merging seed selection Structural Similarity Index |
Title | Comparative Study of Color Image Segmentation by the Seeded Region Growing Algorithm |
URI | https://ieeexplore.ieee.org/document/8596399 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED61nWDh0SLe8sBI0oQ4iT2iiFKQQIi2Urcqji-lgiaoSofy6zknoQXEwGAptpTTya-7s7_7DHCBwks1R8-KHYwtrh1pqYRLK5Ui5hKDFHXJ9vkY9Ef8fuyPG3C5zoVBxBJ8hrb5LO_ydZ4szVFZV_jSGNQmNGmaVbla6_OUkrWkzrk0dZqrhlq8vsh0HdmN7gZDg-USdi3nx4MqpT3p7cDDlyYVjOTVXhbKTj5-kTT-V9Vd6Gwy99jT2ibtQQOzfdj-RjrYhmG0IfxmBka4YnnKItoEF-xuTtsLG-B0XqckZUytGPmI1IYaNXtGg19mtxS8kzB2_TbNF7PiZd6BUe9mGPWt-m0Fa0YOQ2ElocAkTgPti8RNwgBpHTo65GT_MeCx8Cgy1sLQWHPX8TBVSH6PcJRHIRAV9A6gleUZHgLzwpAUkI5U9CdHLq9CEkmOUawCN5b-EbRN_0zeK_qMSd01x383n8CWGaMKL3cKrWKxxDOy-4U6Lwf8E9BqrBA |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT4MwFG7mPKgXf2zG3_bgURiTAu3REOem22IcS3ZbKH3MRQdmYYf51_sKuKnx4IEEmvDy0kLf99rvfSXkCrgdKwa2EVoQGkxZwpARE0YseMgEuDGoXO2z77aH7GHkjCrkelULAwA5-QxMfZvv5as0WuilsgZ3hA6oG2QT4z5zimqt1YpKrltSVl3qZ_xatbh4uZXZtETD7wwCzebiZmnpx5EqeURp7ZLely8FkeTVXGTSjD5-yTT-19k9Ul_X7tGnVVTaJxVIDsjON9nBGgn8teQ31UTCJU1j6uM0OKedGU4wdACTWVmUlFC5pIgSsQ0UKPoMmsFM7zF9R2P09m2SzqfZy6xOhq27wG8b5ekKxhQhQ2ZEHocojF3l8KgZeS7gn2gpjyECAJeF3MbcWHEtZM2alg2xBEQ-3JI2JkF4gX1IqkmawBGhtuehA8ISEt9kwMSNhyYRGoXSbYbCOSY13T_j90JAY1x2zcnfzZdkqx30uuNup_94Srb1eBXsuTNSzeYLOEcUkMmLfPA_AQVur10 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2018+IEEE+5th+International+Congress+on+Information+Science+and+Technology+%28CiSt%29&rft.atitle=Comparative+Study+of+Color+Image+Segmentation+by+the+Seeded+Region+Growing+Algorithm&rft.au=Charifi%2C+Rajaa&rft.au=Essbai%2C+Najia&rft.au=Mansouri%2C+Anass&rft.au=Zennayi%2C+Yahya&rft.date=2018-10-01&rft.pub=IEEE&rft.eissn=2327-1884&rft.spage=279&rft.epage=284&rft_id=info:doi/10.1109%2FCIST.2018.8596399&rft.externalDocID=8596399 |