Detail-Preserving 3D Shape Modeling from Raw Volumetric Dataset via Hessian-Constrained Local Implicit Surfaces Optimization

Massive routinely-acquired raw volumetric datasets are hard to be deeply exploited by cyber worlds related downstream applications due to the challenges in accurate and efficient shape modeling. This paper systematically advocates an interactive 3D shape modeling framework for raw volumetric dataset...

Full description

Saved in:
Bibliographic Details
Published in2016 International Conference on Cyberworlds (CW) pp. 25 - 32
Main Authors Shuai Li, Dehui Yan, Xiangyang Li, Aimin Hao, Hong Qin
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.09.2016
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Massive routinely-acquired raw volumetric datasets are hard to be deeply exploited by cyber worlds related downstream applications due to the challenges in accurate and efficient shape modeling. This paper systematically advocates an interactive 3D shape modeling framework for raw volumetric datasets by iteratively optimizing Hessian-constrained local implicit surfaces. The key idea is to incorporate contour based interactive segmentation into the generalized local implicit surface reconstruction. Our framework allows a user to flexibly define derivative constraints up to the second order via intuitively placing contours on the cross sections of volumetric images and fine-tuning the eigenvector frame of Hessian matrix. It enables detail-preserving local implicit representation while combating certain difficulties due to ambiguous image regions, low-quality irregular data, close sheets, and massive coefficients involved extra computing burden. Moreover, we conduct extensive experiments on some volumetric images with blurry object boundaries, and make comprehensive, quantitative performance evaluation between our method and the state-of-the-art radial basis function based techniques. All the results demonstrate our method's advantages in the accuracy, detail-preserving, efficiency, and versatility of shape modeling.
AbstractList Massive routinely-acquired raw volumetric datasets are hard to be deeply exploited by cyber worlds related downstream applications due to the challenges in accurate and efficient shape modeling. This paper systematically advocates an interactive 3D shape modeling framework for raw volumetric datasets by iteratively optimizing Hessian-constrained local implicit surfaces. The key idea is to incorporate contour based interactive segmentation into the generalized local implicit surface reconstruction. Our framework allows a user to flexibly define derivative constraints up to the second order via intuitively placing contours on the cross sections of volumetric images and fine-tuning the eigenvector frame of Hessian matrix. It enables detail-preserving local implicit representation while combating certain difficulties due to ambiguous image regions, low-quality irregular data, close sheets, and massive coefficients involved extra computing burden. Moreover, we conduct extensive experiments on some volumetric images with blurry object boundaries, and make comprehensive, quantitative performance evaluation between our method and the state-of-the-art radial basis function based techniques. All the results demonstrate our method's advantages in the accuracy, detail-preserving, efficiency, and versatility of shape modeling.
Author Shuai Li
Dehui Yan
Xiangyang Li
Aimin Hao
Hong Qin
Author_xml – sequence: 1
  surname: Shuai Li
  fullname: Shuai Li
  organization: State Key Lab. of Virtual Reality Technol. & Syst., Beihang Univ., Beijing, China
– sequence: 2
  surname: Dehui Yan
  fullname: Dehui Yan
  organization: Beihang Univ., Beijing, China
– sequence: 3
  surname: Xiangyang Li
  fullname: Xiangyang Li
  organization: Beihang Univ., Beijing, China
– sequence: 4
  surname: Aimin Hao
  fullname: Aimin Hao
  email: ham@buaa.edu.cn
  organization: State Key Lab. of Virtual Reality Technol. & Syst., Beihang Univ., Beijing, China
– sequence: 5
  surname: Hong Qin
  fullname: Hong Qin
  email: qin@cs.stonybrook.edu
  organization: Dept. of Comput. Sci., Stony Brook Univ., Stony Brook, NY, USA
BookMark eNotzMtKAzEUgOEIutDajVs3eYGpuTSTzlKmaguVivWyLKfJiQZmkiFJK4oPL6KrH77Ff0aOQwxIyAVnE85Zc9W-TgTj9YSLIzJu9Iwr1jAhmVSn5HuOBXxXPSTMmA4-vFE5p5t3GJDeR4vdr7gUe_oIH_QldvseS_KGzqFAxkIPHugCc_YQqjaGXBL4gJauooGOLvuh88YXutknBwYzXQ_F9_4Lio_hnJw46DKO_zsiz7c3T-2iWq3vlu31qvJcq1IZPUW7Q-OMYCinGnQjtLOyQb5zlhuzUwrAMaaMrrFmTnAjOViFM-twJuSIXP59PSJuh-R7SJ9brVXNhZQ_Rn1cXw
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/CW.2016.12
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781509023035
1509023038
EndPage 32
ExternalDocumentID 7756123
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i175t-c74edbecfc20e347a7927fd39e1bfd1ccb55aaf005c76e60f21c31ad5e8dfe823
IEDL.DBID RIE
IngestDate Thu Jun 29 18:38:03 EDT 2023
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-c74edbecfc20e347a7927fd39e1bfd1ccb55aaf005c76e60f21c31ad5e8dfe823
PageCount 8
ParticipantIDs ieee_primary_7756123
PublicationCentury 2000
PublicationDate 2016-Sept.
PublicationDateYYYYMMDD 2016-09-01
PublicationDate_xml – month: 09
  year: 2016
  text: 2016-Sept.
PublicationDecade 2010
PublicationTitle 2016 International Conference on Cyberworlds (CW)
PublicationTitleAbbrev CYBER
PublicationYear 2016
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.6401234
Snippet Massive routinely-acquired raw volumetric datasets are hard to be deeply exploited by cyber worlds related downstream applications due to the challenges in...
SourceID ieee
SourceType Publisher
StartPage 25
SubjectTerms 3D shape modeling
Hessian constraints
Image reconstruction
Image segmentation
implicit surfaces
raw volumetric dataset
Rough surfaces
Shape
Solid modeling
Surface reconstruction
Three-dimensional displays
Title Detail-Preserving 3D Shape Modeling from Raw Volumetric Dataset via Hessian-Constrained Local Implicit Surfaces Optimization
URI https://ieeexplore.ieee.org/document/7756123
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ1LT8JAFIUnwMqVGjC-MwuXTul72jVI0IgaEWVH7szcUWIshBRNjD_e3lLRGBfumqZJm7mdOX185x7GTlLru8V9GwuIUleEoKVQBkB4qA1IadAqciMPruL-KLwYR-MaO117YRCxhM_Qoc3yX76Z6SV9KmtLSVmOQZ3Vixe3lVer6jjquWm780CkVuxQuOSPpJRSKHqbbPB1ihUf8uwsc-Xo91_dF_97DVus9W3J4zdrsdlmNcya7KNbAqCCOAqa89kjD7p8-ARz5BRyRlZzTgYSfgtv_L5ciKgjP-9CXqhXzl-nwPsEwkImKLqzDIxAwy9J4fh5SZtPcz5cLiyhW_y6WGBeKudmi416Z3edvqjiFMS0eEbIhZYhmqJkVvsuBqEEmfrSmiBFT1njaa2iCMAW01LLGGPX-p4OPDARJsZi4gc7rJHNMtxlPE0g0coNQ4U2VGEAEtLYxySmY73U7LEmjdxkvuqYMakGbf_v3Qdsgwq3IrcOWSNfLPGokPpcHZc1_gQLV7CS
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ1LT8JAFIUniAtdqQHj21m4dLDvadcgQQU04mtH7szcUWIshLSaGH-8vQXRGBfumqZJm7kzc5r2O_cwdpRYzynmbSQgTBwRgJZCGQDhojYgpUGryI3c60ed2-D8IXyosOOFFwYRS_gMG3RY_ss3Y53Tp7ITKSnL0V9iy4Xuh-7MrTXvOeo6yUnznlitqEHxkj-yUkqpaK-x3tdNZoTIcyPPVEO__-q_-N-nWGf1b1Mev1rIzQarYFpjH60SARVEUtCqTx-53-KDJ5ggp5gzMptzspDwa3jjd-VWRD35eQuyQr8y_joC3iEUFlJB4Z1lZAQa3iWN42clbz7K-CCfWoK3-GWxxbzMvZt1dts-vWl2xDxQQYyKt4RMaBmgKYpmteegH0iQiSet8RN0lTWu1ioMAWyxMLWMMHKs52rfBRNibCzGnr_Jquk4xS3GkxhirZwgUGgDFfggIYk8jCO61k3MNqvRyA0ns54Zw_mg7fx9-pCtdG563WH3rH-xy1apiDOOa49Vs2mO-4XwZ-qgrPcnaUSz2w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2016+International+Conference+on+Cyberworlds+%28CW%29&rft.atitle=Detail-Preserving+3D+Shape+Modeling+from+Raw+Volumetric+Dataset+via+Hessian-Constrained+Local+Implicit+Surfaces+Optimization&rft.au=Shuai+Li&rft.au=Dehui+Yan&rft.au=Xiangyang+Li&rft.au=Aimin+Hao&rft.date=2016-09-01&rft.pub=IEEE&rft.spage=25&rft.epage=32&rft_id=info:doi/10.1109%2FCW.2016.12&rft.externalDocID=7756123