Detail-Preserving 3D Shape Modeling from Raw Volumetric Dataset via Hessian-Constrained Local Implicit Surfaces Optimization
Massive routinely-acquired raw volumetric datasets are hard to be deeply exploited by cyber worlds related downstream applications due to the challenges in accurate and efficient shape modeling. This paper systematically advocates an interactive 3D shape modeling framework for raw volumetric dataset...
Saved in:
Published in | 2016 International Conference on Cyberworlds (CW) pp. 25 - 32 |
---|---|
Main Authors | , , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.09.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Massive routinely-acquired raw volumetric datasets are hard to be deeply exploited by cyber worlds related downstream applications due to the challenges in accurate and efficient shape modeling. This paper systematically advocates an interactive 3D shape modeling framework for raw volumetric datasets by iteratively optimizing Hessian-constrained local implicit surfaces. The key idea is to incorporate contour based interactive segmentation into the generalized local implicit surface reconstruction. Our framework allows a user to flexibly define derivative constraints up to the second order via intuitively placing contours on the cross sections of volumetric images and fine-tuning the eigenvector frame of Hessian matrix. It enables detail-preserving local implicit representation while combating certain difficulties due to ambiguous image regions, low-quality irregular data, close sheets, and massive coefficients involved extra computing burden. Moreover, we conduct extensive experiments on some volumetric images with blurry object boundaries, and make comprehensive, quantitative performance evaluation between our method and the state-of-the-art radial basis function based techniques. All the results demonstrate our method's advantages in the accuracy, detail-preserving, efficiency, and versatility of shape modeling. |
---|---|
AbstractList | Massive routinely-acquired raw volumetric datasets are hard to be deeply exploited by cyber worlds related downstream applications due to the challenges in accurate and efficient shape modeling. This paper systematically advocates an interactive 3D shape modeling framework for raw volumetric datasets by iteratively optimizing Hessian-constrained local implicit surfaces. The key idea is to incorporate contour based interactive segmentation into the generalized local implicit surface reconstruction. Our framework allows a user to flexibly define derivative constraints up to the second order via intuitively placing contours on the cross sections of volumetric images and fine-tuning the eigenvector frame of Hessian matrix. It enables detail-preserving local implicit representation while combating certain difficulties due to ambiguous image regions, low-quality irregular data, close sheets, and massive coefficients involved extra computing burden. Moreover, we conduct extensive experiments on some volumetric images with blurry object boundaries, and make comprehensive, quantitative performance evaluation between our method and the state-of-the-art radial basis function based techniques. All the results demonstrate our method's advantages in the accuracy, detail-preserving, efficiency, and versatility of shape modeling. |
Author | Shuai Li Dehui Yan Xiangyang Li Aimin Hao Hong Qin |
Author_xml | – sequence: 1 surname: Shuai Li fullname: Shuai Li organization: State Key Lab. of Virtual Reality Technol. & Syst., Beihang Univ., Beijing, China – sequence: 2 surname: Dehui Yan fullname: Dehui Yan organization: Beihang Univ., Beijing, China – sequence: 3 surname: Xiangyang Li fullname: Xiangyang Li organization: Beihang Univ., Beijing, China – sequence: 4 surname: Aimin Hao fullname: Aimin Hao email: ham@buaa.edu.cn organization: State Key Lab. of Virtual Reality Technol. & Syst., Beihang Univ., Beijing, China – sequence: 5 surname: Hong Qin fullname: Hong Qin email: qin@cs.stonybrook.edu organization: Dept. of Comput. Sci., Stony Brook Univ., Stony Brook, NY, USA |
BookMark | eNotzMtKAzEUgOEIutDajVs3eYGpuTSTzlKmaguVivWyLKfJiQZmkiFJK4oPL6KrH77Ff0aOQwxIyAVnE85Zc9W-TgTj9YSLIzJu9Iwr1jAhmVSn5HuOBXxXPSTMmA4-vFE5p5t3GJDeR4vdr7gUe_oIH_QldvseS_KGzqFAxkIPHugCc_YQqjaGXBL4gJauooGOLvuh88YXutknBwYzXQ_F9_4Lio_hnJw46DKO_zsiz7c3T-2iWq3vlu31qvJcq1IZPUW7Q-OMYCinGnQjtLOyQb5zlhuzUwrAMaaMrrFmTnAjOViFM-twJuSIXP59PSJuh-R7SJ9brVXNhZQ_Rn1cXw |
CODEN | IEEPAD |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/CW.2016.12 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISBN | 9781509023035 1509023038 |
EndPage | 32 |
ExternalDocumentID | 7756123 |
Genre | orig-research |
GroupedDBID | 6IE 6IL CBEJK RIE RIL |
ID | FETCH-LOGICAL-i175t-c74edbecfc20e347a7927fd39e1bfd1ccb55aaf005c76e60f21c31ad5e8dfe823 |
IEDL.DBID | RIE |
IngestDate | Thu Jun 29 18:38:03 EDT 2023 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i175t-c74edbecfc20e347a7927fd39e1bfd1ccb55aaf005c76e60f21c31ad5e8dfe823 |
PageCount | 8 |
ParticipantIDs | ieee_primary_7756123 |
PublicationCentury | 2000 |
PublicationDate | 2016-Sept. |
PublicationDateYYYYMMDD | 2016-09-01 |
PublicationDate_xml | – month: 09 year: 2016 text: 2016-Sept. |
PublicationDecade | 2010 |
PublicationTitle | 2016 International Conference on Cyberworlds (CW) |
PublicationTitleAbbrev | CYBER |
PublicationYear | 2016 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
Score | 1.6401234 |
Snippet | Massive routinely-acquired raw volumetric datasets are hard to be deeply exploited by cyber worlds related downstream applications due to the challenges in... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 25 |
SubjectTerms | 3D shape modeling Hessian constraints Image reconstruction Image segmentation implicit surfaces raw volumetric dataset Rough surfaces Shape Solid modeling Surface reconstruction Three-dimensional displays |
Title | Detail-Preserving 3D Shape Modeling from Raw Volumetric Dataset via Hessian-Constrained Local Implicit Surfaces Optimization |
URI | https://ieeexplore.ieee.org/document/7756123 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ1LT8JAFIUnwMqVGjC-MwuXTul72jVI0IgaEWVH7szcUWIshBRNjD_e3lLRGBfumqZJm7mdOX185x7GTlLru8V9GwuIUleEoKVQBkB4qA1IadAqciMPruL-KLwYR-MaO117YRCxhM_Qoc3yX76Z6SV9KmtLSVmOQZ3Vixe3lVer6jjquWm780CkVuxQuOSPpJRSKHqbbPB1ihUf8uwsc-Xo91_dF_97DVus9W3J4zdrsdlmNcya7KNbAqCCOAqa89kjD7p8-ARz5BRyRlZzTgYSfgtv_L5ciKgjP-9CXqhXzl-nwPsEwkImKLqzDIxAwy9J4fh5SZtPcz5cLiyhW_y6WGBeKudmi416Z3edvqjiFMS0eEbIhZYhmqJkVvsuBqEEmfrSmiBFT1njaa2iCMAW01LLGGPX-p4OPDARJsZi4gc7rJHNMtxlPE0g0coNQ4U2VGEAEtLYxySmY73U7LEmjdxkvuqYMakGbf_v3Qdsgwq3IrcOWSNfLPGokPpcHZc1_gQLV7CS |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ1LT8JAFIUniAtdqQHj21m4dLDvadcgQQU04mtH7szcUWIshLSaGH-8vQXRGBfumqZJm7kzc5r2O_cwdpRYzynmbSQgTBwRgJZCGQDhojYgpUGryI3c60ed2-D8IXyosOOFFwYRS_gMG3RY_ss3Y53Tp7ITKSnL0V9iy4Xuh-7MrTXvOeo6yUnznlitqEHxkj-yUkqpaK-x3tdNZoTIcyPPVEO__-q_-N-nWGf1b1Mev1rIzQarYFpjH60SARVEUtCqTx-53-KDJ5ggp5gzMptzspDwa3jjd-VWRD35eQuyQr8y_joC3iEUFlJB4Z1lZAQa3iWN42clbz7K-CCfWoK3-GWxxbzMvZt1dts-vWl2xDxQQYyKt4RMaBmgKYpmteegH0iQiSet8RN0lTWu1ioMAWyxMLWMMHKs52rfBRNibCzGnr_Jquk4xS3GkxhirZwgUGgDFfggIYk8jCO61k3MNqvRyA0ns54Zw_mg7fx9-pCtdG563WH3rH-xy1apiDOOa49Vs2mO-4XwZ-qgrPcnaUSz2w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2016+International+Conference+on+Cyberworlds+%28CW%29&rft.atitle=Detail-Preserving+3D+Shape+Modeling+from+Raw+Volumetric+Dataset+via+Hessian-Constrained+Local+Implicit+Surfaces+Optimization&rft.au=Shuai+Li&rft.au=Dehui+Yan&rft.au=Xiangyang+Li&rft.au=Aimin+Hao&rft.date=2016-09-01&rft.pub=IEEE&rft.spage=25&rft.epage=32&rft_id=info:doi/10.1109%2FCW.2016.12&rft.externalDocID=7756123 |