Parameter Identification of LuGre Friction Model in Servo System Based on Improved Particle Swarm Optimization Algorithm

LuGre friction model can describe dynamic characteristics of friction in servo system accurately, but because of its high nonlinearity, it is very difficult to estimate the parameters of the model. In this paper, based on particle swarm optimization algorithm, a two-step off-line identification meth...

Full description

Saved in:
Bibliographic Details
Published in2007 Chinese Control Conference pp. 135 - 139
Main Author Zhang Wenjing
Format Conference Proceeding
LanguageChinese
English
Published IEEE 01.07.2007
Subjects
Online AccessGet full text

Cover

Loading…
Abstract LuGre friction model can describe dynamic characteristics of friction in servo system accurately, but because of its high nonlinearity, it is very difficult to estimate the parameters of the model. In this paper, based on particle swarm optimization algorithm, a two-step off-line identification methodology of the LuGre friction parameters is presented to compensate the dynamic friction. Firstly, four static parameters are identified via Stribeck curve. Secondly, two dynamic parameters are estimated by stick-slip response curve. Particle swarm optimization is used in both steps to minimize the identification errors, which can avoid local convergence problem existing in the many linear identification methods. The main advantage of this method in comparison with classical ones, as the least-squares approach, is that it provides not only estimation of the parameters but also precision with which the estimated values is guaranteed, and at the same time it can avoid the problem of local minimum. At last, the identification results are applied to a ship-borne gun servo system. Experiments verify the effectiveness of the proposed scheme for high-precision motion trajectory tracking.
AbstractList LuGre friction model can describe dynamic characteristics of friction in servo system accurately, but because of its high nonlinearity, it is very difficult to estimate the parameters of the model. In this paper, based on particle swarm optimization algorithm, a two-step off-line identification methodology of the LuGre friction parameters is presented to compensate the dynamic friction. Firstly, four static parameters are identified via Stribeck curve. Secondly, two dynamic parameters are estimated by stick-slip response curve. Particle swarm optimization is used in both steps to minimize the identification errors, which can avoid local convergence problem existing in the many linear identification methods. The main advantage of this method in comparison with classical ones, as the least-squares approach, is that it provides not only estimation of the parameters but also precision with which the estimated values is guaranteed, and at the same time it can avoid the problem of local minimum. At last, the identification results are applied to a ship-borne gun servo system. Experiments verify the effectiveness of the proposed scheme for high-precision motion trajectory tracking.
Author Zhang Wenjing
Author_xml – sequence: 1
  surname: Zhang Wenjing
  fullname: Zhang Wenjing
  organization: Chinese Acad. of Sci., Beijing
BookMark eNotkN1OwkAUhNeIiYC8gN7sCxT3p9vtucRGoAkGE_SabLunuqY_ZLui-PSicDWTM5kvOTMig7ZrkZBbzqacM7jPlnmWTQVjyTSWcQIsvSAjDYxpDkLAJZmATnXKuYiZUjAgQw4yjrhO0msy6vuPY5MBl0Py_Wy8aTCgp7nFNrjKlSa4rqVdRVefC4907l35f3nqLNbUtXSDft_RzaEP2NAH06Olxzhvdr7bH_0RGVxZI918Gd_Q9S64xv2cqLP6rfMuvDc35KoydY-Ts47J6_zxJVtGq_Uiz2aryHGtQlQKWyJyq0EYCUoaQKO0TU1cgY0LjokBUSmroOCxLlIt_r4u0aCSlShAjsndiesQcbvzrjH-sD2vJn8BlfJizA
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/CHICC.2006.4346908
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 7900719229
9787900719225
EndPage 139
ExternalDocumentID 4346908
Genre orig-research
GroupedDBID 29B
6IE
6IF
6IK
6IL
6IN
AAJGR
AAWTH
ABLEC
ACGFS
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IPLJI
M43
OCL
RIE
RIL
ID FETCH-LOGICAL-i175t-c2dcee1d792a3953a9ea57d8a4f9d4b1e6a92f5d59b147b8728112ceae53f2b93
IEDL.DBID RIE
ISBN 9787811240559
7811240556
ISSN 1934-1768
IngestDate Wed Aug 27 02:42:10 EDT 2025
IsPeerReviewed false
IsScholarly true
Language Chinese
English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-c2dcee1d792a3953a9ea57d8a4f9d4b1e6a92f5d59b147b8728112ceae53f2b93
PageCount 5
ParticipantIDs ieee_primary_4346908
PublicationCentury 2000
PublicationDate 2007-July
PublicationDateYYYYMMDD 2007-07-01
PublicationDate_xml – month: 07
  year: 2007
  text: 2007-July
PublicationDecade 2000
PublicationTitle 2007 Chinese Control Conference
PublicationTitleAbbrev CHICC
PublicationYear 2007
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0060913
ssj0001967500
Score 1.8683112
Snippet LuGre friction model can describe dynamic characteristics of friction in servo system accurately, but because of its high nonlinearity, it is very difficult to...
SourceID ieee
SourceType Publisher
StartPage 135
SubjectTerms AC Servo System
Automation
Electronic mail
Friction
Information systems
LuGre Friction Model
Nonlinear dynamical systems
Parameter estimation
Parameter Identification
Particle swarm optimization
Servomechanisms
State estimation
Tracking
Title Parameter Identification of LuGre Friction Model in Servo System Based on Improved Particle Swarm Optimization Algorithm
URI https://ieeexplore.ieee.org/document/4346908
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELbaTrDwaBFveWAkbR52Eo9QURCiUAkqdavs-AwVbYKiRCB-PXactoAY2BxniHNx7s53932H0BkLIVYg9RdQke8QoMrRXgZ3CAvMv6cYr-Bjw_vwZkxuJ3TSQOcrLAwAVMVn0DXDKpcvs6Q0obIeCcxhLm6ipj64WazWOp7CtOtryiGtFg4N36XNKBNDghjrE5kBVWoDRmlomXdW12yJpnFZz8S6-jZJUT_uR9-VyuwMttBwuWBbbfLaLQvRTT5_cTn-9422UWcN8MOjlenaQQ1Id9HmN27CNvoYcVO3pcWOLZhX1dE9nCl8V17ngAf5rEJFYNNQbY5nKTaaJ8OWBR1fagMpsb5tAxd6PKr3KX585_kCP2h1tahxoPhi_pzls-Jl0UHjwdVT_8ap2zQ4M-17FE7iS71cT0bM5wGjAWfAaSRjThSTRHgQcuYrKikTHolEHPlG7glwoIHyBQv2UCvNUthHOPIpRK5xmQJFiBBcaX_NAz3hSpMiPkBtI8Ppm2XimNbiO_x7-ghtLCOxrneMWkVewol2IQpxWu2dL4lzv4s
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LU8IwEM4gHtSLD3B8m4NHC30kbXNURkQFZEaY4cakZKOMQJ1OOzr-epOmgDoevKXpoek23d3s7vctQhfMh1CCUF9ABq5FgEpLeRncIszT_55kPIePdbp-a0Duh3RYQpdLLAwA5MVnUNPDPJcv4nGmQ2V14unDXLiG1pXdp45Ba60iKkw5v7og0uhhXzNempwy0TSIoTqTaVilMmGU-oZ7Z3nNFngam9V1tKth0hTFA390XskNT3MbdRZLNvUmr7UsjWrjz19sjv99px1UXUH8cG9pvHZRCeZ7aOsbO2EFffS4rtxSgscGziuL-B6OJW5ntwngZjLJcRFYt1Sb4skca90TY8ODjq-ViRRY3TahCzXuFTsVP73zZIYflcKaFUhQfDV9jpNJ-jKrokHzpt9oWUWjBmuivI_UGrtCLdcRAXO5x6jHGXAaiJATyQSJHPA5cyUVlEUOCaIwcLXcx8CBetKNmLePyvN4DgcIBy6FwNZOkycJiSIulcfmgJqwhU4SH6KKluHozXBxjArxHf09fY42Wv1Oe9S-6z4co81FXNZ2TlA5TTI4VQ5FGp3l--gLuaXC1A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2007+Chinese+Control+Conference&rft.atitle=Parameter+Identification+of+LuGre+Friction+Model+in+Servo+System+Based+on+Improved+Particle+Swarm+Optimization+Algorithm&rft.au=Zhang+Wenjing&rft.date=2007-07-01&rft.pub=IEEE&rft.isbn=9787811240559&rft.issn=1934-1768&rft.spage=135&rft.epage=139&rft_id=info:doi/10.1109%2FCHICC.2006.4346908&rft.externalDocID=4346908
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1934-1768&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1934-1768&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1934-1768&client=summon