Parameter Identification of LuGre Friction Model in Servo System Based on Improved Particle Swarm Optimization Algorithm
LuGre friction model can describe dynamic characteristics of friction in servo system accurately, but because of its high nonlinearity, it is very difficult to estimate the parameters of the model. In this paper, based on particle swarm optimization algorithm, a two-step off-line identification meth...
Saved in:
Published in | 2007 Chinese Control Conference pp. 135 - 139 |
---|---|
Main Author | |
Format | Conference Proceeding |
Language | Chinese English |
Published |
IEEE
01.07.2007
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | LuGre friction model can describe dynamic characteristics of friction in servo system accurately, but because of its high nonlinearity, it is very difficult to estimate the parameters of the model. In this paper, based on particle swarm optimization algorithm, a two-step off-line identification methodology of the LuGre friction parameters is presented to compensate the dynamic friction. Firstly, four static parameters are identified via Stribeck curve. Secondly, two dynamic parameters are estimated by stick-slip response curve. Particle swarm optimization is used in both steps to minimize the identification errors, which can avoid local convergence problem existing in the many linear identification methods. The main advantage of this method in comparison with classical ones, as the least-squares approach, is that it provides not only estimation of the parameters but also precision with which the estimated values is guaranteed, and at the same time it can avoid the problem of local minimum. At last, the identification results are applied to a ship-borne gun servo system. Experiments verify the effectiveness of the proposed scheme for high-precision motion trajectory tracking. |
---|---|
AbstractList | LuGre friction model can describe dynamic characteristics of friction in servo system accurately, but because of its high nonlinearity, it is very difficult to estimate the parameters of the model. In this paper, based on particle swarm optimization algorithm, a two-step off-line identification methodology of the LuGre friction parameters is presented to compensate the dynamic friction. Firstly, four static parameters are identified via Stribeck curve. Secondly, two dynamic parameters are estimated by stick-slip response curve. Particle swarm optimization is used in both steps to minimize the identification errors, which can avoid local convergence problem existing in the many linear identification methods. The main advantage of this method in comparison with classical ones, as the least-squares approach, is that it provides not only estimation of the parameters but also precision with which the estimated values is guaranteed, and at the same time it can avoid the problem of local minimum. At last, the identification results are applied to a ship-borne gun servo system. Experiments verify the effectiveness of the proposed scheme for high-precision motion trajectory tracking. |
Author | Zhang Wenjing |
Author_xml | – sequence: 1 surname: Zhang Wenjing fullname: Zhang Wenjing organization: Chinese Acad. of Sci., Beijing |
BookMark | eNotkN1OwkAUhNeIiYC8gN7sCxT3p9vtucRGoAkGE_SabLunuqY_ZLui-PSicDWTM5kvOTMig7ZrkZBbzqacM7jPlnmWTQVjyTSWcQIsvSAjDYxpDkLAJZmATnXKuYiZUjAgQw4yjrhO0msy6vuPY5MBl0Py_Wy8aTCgp7nFNrjKlSa4rqVdRVefC4907l35f3nqLNbUtXSDft_RzaEP2NAH06Olxzhvdr7bH_0RGVxZI918Gd_Q9S64xv2cqLP6rfMuvDc35KoydY-Ts47J6_zxJVtGq_Uiz2aryHGtQlQKWyJyq0EYCUoaQKO0TU1cgY0LjokBUSmroOCxLlIt_r4u0aCSlShAjsndiesQcbvzrjH-sD2vJn8BlfJizA |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/CHICC.2006.4346908 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISBN | 7900719229 9787900719225 |
EndPage | 139 |
ExternalDocumentID | 4346908 |
Genre | orig-research |
GroupedDBID | 29B 6IE 6IF 6IK 6IL 6IN AAJGR AAWTH ABLEC ACGFS ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IPLJI M43 OCL RIE RIL |
ID | FETCH-LOGICAL-i175t-c2dcee1d792a3953a9ea57d8a4f9d4b1e6a92f5d59b147b8728112ceae53f2b93 |
IEDL.DBID | RIE |
ISBN | 9787811240559 7811240556 |
ISSN | 1934-1768 |
IngestDate | Wed Aug 27 02:42:10 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Language | Chinese English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i175t-c2dcee1d792a3953a9ea57d8a4f9d4b1e6a92f5d59b147b8728112ceae53f2b93 |
PageCount | 5 |
ParticipantIDs | ieee_primary_4346908 |
PublicationCentury | 2000 |
PublicationDate | 2007-July |
PublicationDateYYYYMMDD | 2007-07-01 |
PublicationDate_xml | – month: 07 year: 2007 text: 2007-July |
PublicationDecade | 2000 |
PublicationTitle | 2007 Chinese Control Conference |
PublicationTitleAbbrev | CHICC |
PublicationYear | 2007 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0060913 ssj0001967500 |
Score | 1.8683112 |
Snippet | LuGre friction model can describe dynamic characteristics of friction in servo system accurately, but because of its high nonlinearity, it is very difficult to... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 135 |
SubjectTerms | AC Servo System Automation Electronic mail Friction Information systems LuGre Friction Model Nonlinear dynamical systems Parameter estimation Parameter Identification Particle swarm optimization Servomechanisms State estimation Tracking |
Title | Parameter Identification of LuGre Friction Model in Servo System Based on Improved Particle Swarm Optimization Algorithm |
URI | https://ieeexplore.ieee.org/document/4346908 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELbaTrDwaBFveWAkbR52Eo9QURCiUAkqdavs-AwVbYKiRCB-PXactoAY2BxniHNx7s53932H0BkLIVYg9RdQke8QoMrRXgZ3CAvMv6cYr-Bjw_vwZkxuJ3TSQOcrLAwAVMVn0DXDKpcvs6Q0obIeCcxhLm6ipj64WazWOp7CtOtryiGtFg4N36XNKBNDghjrE5kBVWoDRmlomXdW12yJpnFZz8S6-jZJUT_uR9-VyuwMttBwuWBbbfLaLQvRTT5_cTn-9422UWcN8MOjlenaQQ1Id9HmN27CNvoYcVO3pcWOLZhX1dE9nCl8V17ngAf5rEJFYNNQbY5nKTaaJ8OWBR1fagMpsb5tAxd6PKr3KX585_kCP2h1tahxoPhi_pzls-Jl0UHjwdVT_8ap2zQ4M-17FE7iS71cT0bM5wGjAWfAaSRjThSTRHgQcuYrKikTHolEHPlG7glwoIHyBQv2UCvNUthHOPIpRK5xmQJFiBBcaX_NAz3hSpMiPkBtI8Ppm2XimNbiO_x7-ghtLCOxrneMWkVewol2IQpxWu2dL4lzv4s |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LU8IwEM4gHtSLD3B8m4NHC30kbXNURkQFZEaY4cakZKOMQJ1OOzr-epOmgDoevKXpoek23d3s7vctQhfMh1CCUF9ABq5FgEpLeRncIszT_55kPIePdbp-a0Duh3RYQpdLLAwA5MVnUNPDPJcv4nGmQ2V14unDXLiG1pXdp45Ba60iKkw5v7og0uhhXzNempwy0TSIoTqTaVilMmGU-oZ7Z3nNFngam9V1tKth0hTFA390XskNT3MbdRZLNvUmr7UsjWrjz19sjv99px1UXUH8cG9pvHZRCeZ7aOsbO2EFffS4rtxSgscGziuL-B6OJW5ntwngZjLJcRFYt1Sb4skca90TY8ODjq-ViRRY3TahCzXuFTsVP73zZIYflcKaFUhQfDV9jpNJ-jKrokHzpt9oWUWjBmuivI_UGrtCLdcRAXO5x6jHGXAaiJATyQSJHPA5cyUVlEUOCaIwcLXcx8CBetKNmLePyvN4DgcIBy6FwNZOkycJiSIulcfmgJqwhU4SH6KKluHozXBxjArxHf09fY42Wv1Oe9S-6z4co81FXNZ2TlA5TTI4VQ5FGp3l--gLuaXC1A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2007+Chinese+Control+Conference&rft.atitle=Parameter+Identification+of+LuGre+Friction+Model+in+Servo+System+Based+on+Improved+Particle+Swarm+Optimization+Algorithm&rft.au=Zhang+Wenjing&rft.date=2007-07-01&rft.pub=IEEE&rft.isbn=9787811240559&rft.issn=1934-1768&rft.spage=135&rft.epage=139&rft_id=info:doi/10.1109%2FCHICC.2006.4346908&rft.externalDocID=4346908 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1934-1768&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1934-1768&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1934-1768&client=summon |