Hierarchical Classification Approach to Emotion Recognition in Twitter
Twitter is a micro logging service where worldwide users publish and share their feelings. However, sentiment analysis for Twitter messages ('tweets') is regarded as a challenging problem because tweets are short and informal. In this paper, we apply a novel approach for automatically clas...
Saved in:
Published in | 2012 Eleventh International Conference on Machine Learning and Applications Vol. 2; pp. 381 - 385 |
---|---|
Main Authors | , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.12.2012
|
Subjects | |
Online Access | Get full text |
ISBN | 1467346519 9781467346511 |
DOI | 10.1109/ICMLA.2012.195 |
Cover
Abstract | Twitter is a micro logging service where worldwide users publish and share their feelings. However, sentiment analysis for Twitter messages ('tweets') is regarded as a challenging problem because tweets are short and informal. In this paper, we apply a novel approach for automatically classifying the sentiment and emotions of Twitter messages. These messages are hierarchically categorized on basis of neutrality, polarity (positive or negative) and presence of various emotions. The hierarchical classification approach (HC) is a specialization of the well-known flat classification task. The main difference between them is that when using HC, examples must be assigned to classes organized in a previously defined class hierarchy, while traditional flat classification does not take into account the hierarchical information. We applied our model to posts collected from Twitter regarding the 2011 season of the Brazilian Soccer League. Our results show that the proposed method outperforms the corresponding flat approach in emotion classification. |
---|---|
AbstractList | Twitter is a micro logging service where worldwide users publish and share their feelings. However, sentiment analysis for Twitter messages ('tweets') is regarded as a challenging problem because tweets are short and informal. In this paper, we apply a novel approach for automatically classifying the sentiment and emotions of Twitter messages. These messages are hierarchically categorized on basis of neutrality, polarity (positive or negative) and presence of various emotions. The hierarchical classification approach (HC) is a specialization of the well-known flat classification task. The main difference between them is that when using HC, examples must be assigned to classes organized in a previously defined class hierarchy, while traditional flat classification does not take into account the hierarchical information. We applied our model to posts collected from Twitter regarding the 2011 season of the Brazilian Soccer League. Our results show that the proposed method outperforms the corresponding flat approach in emotion classification. |
Author | Esmin, A. A. A. Matwin, S. De Oliveira, Roberto L. |
Author_xml | – sequence: 1 givenname: A. A. A. surname: Esmin fullname: Esmin, A. A. A. email: ahmed@dcc.ufla.br organization: Dept. of Comput. Sci., Fed. Univ. of Lavras, Lavras, Brazil – sequence: 2 givenname: Roberto L. surname: De Oliveira fullname: De Oliveira, Roberto L. email: robertolojr@dcc.ufmg.br organization: Dept. of Comput. Sci., Fed. Univ. of Minas, Belo Horizonte, Brazil – sequence: 3 givenname: S. surname: Matwin fullname: Matwin, S. email: stan@eecs.uottawa.ca organization: Sch. of Electr. Eng. & Comput. Sci., Univ. of Ottawa, Ottawa, ON, Canada |
BookMark | eNotjk1Lw0AURUdU0NZs3bjJH0icN28-lyG0thARpK7LMJmxI2kSJgHx3xuqq3u4cC53RW76ofeEPAItAah53tevTVUyCqwEI65IZpSmShrBDSC7JivgUiGXAswdyabpi1K6iBI5vyfbXfTJJneKznZ53dlpimHhOQ59Xo1jGqw75fOQb87DpXv3bvjs44Vjnx--4zz79EBug-0mn_3nmnxsN4d6VzRvL_u6aooISsyFA7TAEEE6EZTjvHWKBaq1DtaGQOXyVDmGThjFWhU4thotFy2DoD0CrsnT32703h_HFM82_Rwlp1JJib8yBk2k |
CODEN | IEEPAD |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/ICMLA.2012.195 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Xplore IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISBN | 9780769549132 0769549136 |
EndPage | 385 |
ExternalDocumentID | 6406766 |
Genre | orig-research |
GroupedDBID | 6IE 6IF 6IK 6IL 6IN AAJGR AAWTH ADFMO ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK IEGSK IERZE OCL RIE RIL |
ID | FETCH-LOGICAL-i175t-c13a123316c5f7c44dc72f0888faaff064677c23c5972d7f43d83a45d21f8e313 |
IEDL.DBID | RIE |
ISBN | 1467346519 9781467346511 |
IngestDate | Wed Aug 27 03:56:20 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i175t-c13a123316c5f7c44dc72f0888faaff064677c23c5972d7f43d83a45d21f8e313 |
PageCount | 5 |
ParticipantIDs | ieee_primary_6406766 |
PublicationCentury | 2000 |
PublicationDate | 2012-Dec. |
PublicationDateYYYYMMDD | 2012-12-01 |
PublicationDate_xml | – month: 12 year: 2012 text: 2012-Dec. |
PublicationDecade | 2010 |
PublicationTitle | 2012 Eleventh International Conference on Machine Learning and Applications |
PublicationTitleAbbrev | icmla |
PublicationYear | 2012 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0001106344 |
Score | 1.6492106 |
Snippet | Twitter is a micro logging service where worldwide users publish and share their feelings. However, sentiment analysis for Twitter messages ('tweets') is... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 381 |
SubjectTerms | Computational linguistics Computer science Conferences Data mining Educational institutions Emotion recognition hierarchical classification sentiment and emotions classification |
Title | Hierarchical Classification Approach to Emotion Recognition in Twitter |
URI | https://ieeexplore.ieee.org/document/6406766 |
Volume | 2 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFH_MnTxN3cRvcvBou6YvS9rjGBtTnIhssNtI0wSKsol0CP71Jmm7iXjwluYU8pK-l-T3AXCbarv9MikDhVESMPd6mOgIA6FiHjOMtPHanbMnPl2wh-Vg2YK7HRdGa-3BZzp0Tf-Wn2_U1l2V9bnNPoLzAziwy6ziau3vU-zZBhnz3C0u0Fl8p42kU_1Na9FGGqX9-9HsceiQXXFInbfED2sVn1kmHZg1Y6oAJa_htsxC9fVLrvG_gz6C3p7DR5532ekYWnp9Ap3GxIHUe7oLk2nhOMjeEuWNeI9Mhx7yASPDWnGclBsyrgx_yEsDObLtYk3mn4UjBPVgMRnPR9OgNlcIClsxlIGiKG3WQsrVwAjFWK5EbOw_JzFSGmMrFS5swFDZE0ecC8MwT1CyQR5Tk2ikeArt9Watz4Co1GAsKbelTsLynGYpskzY2iqLEFFG59B107J6r_QzVvWMXPzdfQmHLiwVZOQK2uXHVl_bxF9mNz7i38_1qG4 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFA9zHvQ0dRO_zcGj7Zq-NG2PY2x0ug6RDXYbaZrAUDqRDsG_3iRtnYgHb0lOIY_kvSS_D4TuYqm3X8a5I8CLHGp-DyPpgRMKn_kUPKmsdmc6Y8mCPiyDZQvdf3NhpJQWfCZd07R_-flGbM1TWZ_p7BMytof2dd6nQcXW2r2o6NsNUGrZWywEY_IdN6JOdZ_Uso3Ei_uTYTodGGyX7xLjLvHDXMXmlnEHpc2sKkjJi7stM1d8_hJs_O-0j1Bvx-LDT9_56Ri1ZHGCOo2NA653dReNk7VhIVtTlFdsXTINfsiGDA9qzXFcbvCosvzBzw3oSLfXBZ5_rA0lqIcW49F8mDi1vYKz1jVD6QgCXOctIEwEKhSU5iL0lT51IsW5UrpWYaEOGQh95_DzUFHII-A0yH2iIgkETlG72BTyDGERK_A5YbrYiWiekywGmoW6uso8AODeOeqaZVm9VQoaq3pFLv4evkUHyTydrqaT2eMlOjQhqgAkV6hdvm_ltS4DyuzGRv8L1t-ruw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2012+Eleventh+International+Conference+on+Machine+Learning+and+Applications&rft.atitle=Hierarchical+Classification+Approach+to+Emotion+Recognition+in+Twitter&rft.au=Esmin%2C+A.+A.+A.&rft.au=De+Oliveira%2C+Roberto+L.&rft.au=Matwin%2C+S.&rft.date=2012-12-01&rft.pub=IEEE&rft.isbn=9781467346511&rft.volume=2&rft.spage=381&rft.epage=385&rft_id=info:doi/10.1109%2FICMLA.2012.195&rft.externalDocID=6406766 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781467346511/lc.gif&client=summon&freeimage=true |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781467346511/mc.gif&client=summon&freeimage=true |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781467346511/sc.gif&client=summon&freeimage=true |