Hierarchical Classification Approach to Emotion Recognition in Twitter

Twitter is a micro logging service where worldwide users publish and share their feelings. However, sentiment analysis for Twitter messages ('tweets') is regarded as a challenging problem because tweets are short and informal. In this paper, we apply a novel approach for automatically clas...

Full description

Saved in:
Bibliographic Details
Published in2012 Eleventh International Conference on Machine Learning and Applications Vol. 2; pp. 381 - 385
Main Authors Esmin, A. A. A., De Oliveira, Roberto L., Matwin, S.
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.12.2012
Subjects
Online AccessGet full text
ISBN1467346519
9781467346511
DOI10.1109/ICMLA.2012.195

Cover

Abstract Twitter is a micro logging service where worldwide users publish and share their feelings. However, sentiment analysis for Twitter messages ('tweets') is regarded as a challenging problem because tweets are short and informal. In this paper, we apply a novel approach for automatically classifying the sentiment and emotions of Twitter messages. These messages are hierarchically categorized on basis of neutrality, polarity (positive or negative) and presence of various emotions. The hierarchical classification approach (HC) is a specialization of the well-known flat classification task. The main difference between them is that when using HC, examples must be assigned to classes organized in a previously defined class hierarchy, while traditional flat classification does not take into account the hierarchical information. We applied our model to posts collected from Twitter regarding the 2011 season of the Brazilian Soccer League. Our results show that the proposed method outperforms the corresponding flat approach in emotion classification.
AbstractList Twitter is a micro logging service where worldwide users publish and share their feelings. However, sentiment analysis for Twitter messages ('tweets') is regarded as a challenging problem because tweets are short and informal. In this paper, we apply a novel approach for automatically classifying the sentiment and emotions of Twitter messages. These messages are hierarchically categorized on basis of neutrality, polarity (positive or negative) and presence of various emotions. The hierarchical classification approach (HC) is a specialization of the well-known flat classification task. The main difference between them is that when using HC, examples must be assigned to classes organized in a previously defined class hierarchy, while traditional flat classification does not take into account the hierarchical information. We applied our model to posts collected from Twitter regarding the 2011 season of the Brazilian Soccer League. Our results show that the proposed method outperforms the corresponding flat approach in emotion classification.
Author Esmin, A. A. A.
Matwin, S.
De Oliveira, Roberto L.
Author_xml – sequence: 1
  givenname: A. A. A.
  surname: Esmin
  fullname: Esmin, A. A. A.
  email: ahmed@dcc.ufla.br
  organization: Dept. of Comput. Sci., Fed. Univ. of Lavras, Lavras, Brazil
– sequence: 2
  givenname: Roberto L.
  surname: De Oliveira
  fullname: De Oliveira, Roberto L.
  email: robertolojr@dcc.ufmg.br
  organization: Dept. of Comput. Sci., Fed. Univ. of Minas, Belo Horizonte, Brazil
– sequence: 3
  givenname: S.
  surname: Matwin
  fullname: Matwin, S.
  email: stan@eecs.uottawa.ca
  organization: Sch. of Electr. Eng. & Comput. Sci., Univ. of Ottawa, Ottawa, ON, Canada
BookMark eNotjk1Lw0AURUdU0NZs3bjJH0icN28-lyG0thARpK7LMJmxI2kSJgHx3xuqq3u4cC53RW76ofeEPAItAah53tevTVUyCqwEI65IZpSmShrBDSC7JivgUiGXAswdyabpi1K6iBI5vyfbXfTJJneKznZ53dlpimHhOQ59Xo1jGqw75fOQb87DpXv3bvjs44Vjnx--4zz79EBug-0mn_3nmnxsN4d6VzRvL_u6aooISsyFA7TAEEE6EZTjvHWKBaq1DtaGQOXyVDmGThjFWhU4thotFy2DoD0CrsnT32703h_HFM82_Rwlp1JJib8yBk2k
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICMLA.2012.195
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Xplore
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 9780769549132
0769549136
EndPage 385
ExternalDocumentID 6406766
Genre orig-research
GroupedDBID 6IE
6IF
6IK
6IL
6IN
AAJGR
AAWTH
ADFMO
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
IEGSK
IERZE
OCL
RIE
RIL
ID FETCH-LOGICAL-i175t-c13a123316c5f7c44dc72f0888faaff064677c23c5972d7f43d83a45d21f8e313
IEDL.DBID RIE
ISBN 1467346519
9781467346511
IngestDate Wed Aug 27 03:56:20 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-c13a123316c5f7c44dc72f0888faaff064677c23c5972d7f43d83a45d21f8e313
PageCount 5
ParticipantIDs ieee_primary_6406766
PublicationCentury 2000
PublicationDate 2012-Dec.
PublicationDateYYYYMMDD 2012-12-01
PublicationDate_xml – month: 12
  year: 2012
  text: 2012-Dec.
PublicationDecade 2010
PublicationTitle 2012 Eleventh International Conference on Machine Learning and Applications
PublicationTitleAbbrev icmla
PublicationYear 2012
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0001106344
Score 1.6492106
Snippet Twitter is a micro logging service where worldwide users publish and share their feelings. However, sentiment analysis for Twitter messages ('tweets') is...
SourceID ieee
SourceType Publisher
StartPage 381
SubjectTerms Computational linguistics
Computer science
Conferences
Data mining
Educational institutions
Emotion recognition
hierarchical classification
sentiment and emotions classification
Twitter
Title Hierarchical Classification Approach to Emotion Recognition in Twitter
URI https://ieeexplore.ieee.org/document/6406766
Volume 2
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFH_MnTxN3cRvcvBou6YvS9rjGBtTnIhssNtI0wSKsol0CP71Jmm7iXjwluYU8pK-l-T3AXCbarv9MikDhVESMPd6mOgIA6FiHjOMtPHanbMnPl2wh-Vg2YK7HRdGa-3BZzp0Tf-Wn2_U1l2V9bnNPoLzAziwy6ziau3vU-zZBhnz3C0u0Fl8p42kU_1Na9FGGqX9-9HsceiQXXFInbfED2sVn1kmHZg1Y6oAJa_htsxC9fVLrvG_gz6C3p7DR5532ekYWnp9Ap3GxIHUe7oLk2nhOMjeEuWNeI9Mhx7yASPDWnGclBsyrgx_yEsDObLtYk3mn4UjBPVgMRnPR9OgNlcIClsxlIGiKG3WQsrVwAjFWK5EbOw_JzFSGmMrFS5swFDZE0ecC8MwT1CyQR5Tk2ikeArt9Watz4Co1GAsKbelTsLynGYpskzY2iqLEFFG59B107J6r_QzVvWMXPzdfQmHLiwVZOQK2uXHVl_bxF9mNz7i38_1qG4
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFA9zHvQ0dRO_zcGj7Zq-NG2PY2x0ug6RDXYbaZrAUDqRDsG_3iRtnYgHb0lOIY_kvSS_D4TuYqm3X8a5I8CLHGp-DyPpgRMKn_kUPKmsdmc6Y8mCPiyDZQvdf3NhpJQWfCZd07R_-flGbM1TWZ_p7BMytof2dd6nQcXW2r2o6NsNUGrZWywEY_IdN6JOdZ_Uso3Ei_uTYTodGGyX7xLjLvHDXMXmlnEHpc2sKkjJi7stM1d8_hJs_O-0j1Bvx-LDT9_56Ri1ZHGCOo2NA653dReNk7VhIVtTlFdsXTINfsiGDA9qzXFcbvCosvzBzw3oSLfXBZ5_rA0lqIcW49F8mDi1vYKz1jVD6QgCXOctIEwEKhSU5iL0lT51IsW5UrpWYaEOGQh95_DzUFHII-A0yH2iIgkETlG72BTyDGERK_A5YbrYiWiekywGmoW6uso8AODeOeqaZVm9VQoaq3pFLv4evkUHyTydrqaT2eMlOjQhqgAkV6hdvm_ltS4DyuzGRv8L1t-ruw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2012+Eleventh+International+Conference+on+Machine+Learning+and+Applications&rft.atitle=Hierarchical+Classification+Approach+to+Emotion+Recognition+in+Twitter&rft.au=Esmin%2C+A.+A.+A.&rft.au=De+Oliveira%2C+Roberto+L.&rft.au=Matwin%2C+S.&rft.date=2012-12-01&rft.pub=IEEE&rft.isbn=9781467346511&rft.volume=2&rft.spage=381&rft.epage=385&rft_id=info:doi/10.1109%2FICMLA.2012.195&rft.externalDocID=6406766
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781467346511/lc.gif&client=summon&freeimage=true
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781467346511/mc.gif&client=summon&freeimage=true
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781467346511/sc.gif&client=summon&freeimage=true