Real-time Pedestrian Detection Using LIDAR and Convolutional Neural Networks

This paper presents a novel real-time pedestrian detection system utilizing a LIDAR-based object detector and convolutional neural network (CNN)-based image classifier. Our method achieves over 10 frames/second processing speed by constraining the search space using the range information from the LI...

Full description

Saved in:
Bibliographic Details
Published in2006 IEEE Intelligent Vehicles Symposium pp. 213 - 218
Main Authors Szarvas, M., Sakai, U., Jun Ogata
Format Conference Proceeding
LanguageEnglish
Published IEEE 2006
Subjects
Online AccessGet full text
ISBN490112286X
9784901122863
ISSN1931-0587
DOI10.1109/IVS.2006.1689630

Cover

Loading…
Abstract This paper presents a novel real-time pedestrian detection system utilizing a LIDAR-based object detector and convolutional neural network (CNN)-based image classifier. Our method achieves over 10 frames/second processing speed by constraining the search space using the range information from the LIDAR. The image region candidates detected by the LIDAR are confirmed for the presence of pedestrians by a convolutional neural network classifier. Our CNN classifier achieves high accuracy at a low computational cost thanks to its ability to automatically learn a small number of highly discriminating features. The focus of this paper is the evaluation of the effect of region of interest (ROI) detection on system accuracy and processing speed. The evaluation results indicate that the use of the LIDAR-based ROI detector can reduce the number of false positives by a factor of 2 and reduce the processing time by a factor of 4. The single frame detection accuracy of the system is above 90% when there is 1 false positive per second
AbstractList This paper presents a novel real-time pedestrian detection system utilizing a LIDAR-based object detector and convolutional neural network (CNN)-based image classifier. Our method achieves over 10 frames/second processing speed by constraining the search space using the range information from the LIDAR. The image region candidates detected by the LIDAR are confirmed for the presence of pedestrians by a convolutional neural network classifier. Our CNN classifier achieves high accuracy at a low computational cost thanks to its ability to automatically learn a small number of highly discriminating features. The focus of this paper is the evaluation of the effect of region of interest (ROI) detection on system accuracy and processing speed. The evaluation results indicate that the use of the LIDAR-based ROI detector can reduce the number of false positives by a factor of 2 and reduce the processing time by a factor of 4. The single frame detection accuracy of the system is above 90% when there is 1 false positive per second
Author Sakai, U.
Szarvas, M.
Jun Ogata
Author_xml – sequence: 1
  givenname: M.
  surname: Szarvas
  fullname: Szarvas, M.
  email: mate@d-itlab.co.jp
  organization: DENSO IT LABORATORY, INC., Tokyo, Japan. Email: mate@d-itlab.co.jp
– sequence: 2
  givenname: U.
  surname: Sakai
  fullname: Sakai, U.
– sequence: 3
  surname: Jun Ogata
  fullname: Jun Ogata
BookMark eNotj8tOwzAURC1RJJrCHomNfyDlXjsvL6uUR6QIUKGIXeUk18iQOih2Qfw9Bbo6ixkdzURs4gZHjJ0jzBFBXVbPj3MBkM0xK1Qm4YhFiQJEIYrsZcKmqCTGkBb5CYu8fwNIUyFwyuoV6T4Odkv8gTryYbTa8SUFaoMdHF976155XS0XK65dx8vBfQ797jfTPb-j3fiH8DWM7_6UHRvdezo7cMbW11dP5W1c399U5aKOLeZpiFswJiHMVIMACZgi7VAVudjPlaaRkFPeGtEIUEJ1qkDZKGpEJ0jvixIyOWMX_15LRJuP0W71-L05PJc_kHJNww
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/IVS.2006.1689630
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Xplore
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EndPage 218
ExternalDocumentID 1689630
Genre orig-research
GroupedDBID 29I
29J
6IE
6IF
6IH
6IK
6IL
6IN
AAJGR
AAWTH
ACGFS
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IPLJI
M43
OCL
RIE
RIL
RNS
ID FETCH-LOGICAL-i175t-c0ff4e169b10040f85d198720113fb307e7cf2b20929d9813b9eb2d2ea5d13063
IEDL.DBID RIE
ISBN 490112286X
9784901122863
ISSN 1931-0587
IngestDate Wed Aug 27 02:53:29 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-c0ff4e169b10040f85d198720113fb307e7cf2b20929d9813b9eb2d2ea5d13063
PageCount 6
ParticipantIDs ieee_primary_1689630
PublicationCentury 2000
PublicationDate 20060000
PublicationDateYYYYMMDD 2006-01-01
PublicationDate_xml – year: 2006
  text: 20060000
PublicationDecade 2000
PublicationTitle 2006 IEEE Intelligent Vehicles Symposium
PublicationTitleAbbrev IVS
PublicationYear 2006
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0055221
ssj0000454314
Score 1.8995966
Snippet This paper presents a novel real-time pedestrian detection system utilizing a LIDAR-based object detector and convolutional neural network (CNN)-based image...
SourceID ieee
SourceType Publisher
StartPage 213
SubjectTerms Accidents
Cameras
Computational efficiency
Detectors
Laboratories
Laser radar
Neural networks
Object detection
Real time systems
Sensor systems
Title Real-time Pedestrian Detection Using LIDAR and Convolutional Neural Networks
URI https://ieeexplore.ieee.org/document/1689630
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELZKJ1h4tIi3PDCSNokd1xkRpWpRQVWhqFsVx2cJgVIECQO_nrOTpoAYmPJQlDjO5fzd6ztCzns8ChiE0jOo69BA0QL_Oc29RMqACSGVBpfleyeGM34zj-YNclHXwgCASz6Djt11sXy9TAvrKusGQqK8oIG-gWJW1mrV_hRLJeeY2EstHCGuCMqIMprLkbS9-bgtswxDKSrmnfqYreKXftwdPd6XIYrqYT-6rrhFZ7BNblfDLXNNnjtFrjrp5y8mx_--zw5pr8v76KReuHZJA7I9svWNmbBFxlMEkJ5tPE8noME198hoH3KXuZVRl2lAx6P-5ZQmmaZ4549KiJMXahk_3MalmL-3yWxw_XA19KrGC94TooncS31jOAQiVpZPzjcy0tY3YbECMwq1AvRSE6rQR2ylY_yoKkYDXYeQ4IVog7B90syWGRwQGiF8UIJr3wjGWSJikfoALNGRsVx_8pC07LwsXktujUU1JUd_nz4mm2sXyAlp5m8FnCIoyNWZk4Yv5_6tIA
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8JAEN4QPKgXH2B8uwePFtrudtkejUhAgRAEw4203dnEaIrR4sFf7-y2FDUePPWRpt1up7PfvL4h5LLFA4-BLx2Nug4NFCXwn1PciaT0mBAyVmCzfIeiO-V3s2BWIVdlLQwA2OQzaJhdG8tXi2RpXGVNT0iUFzTQN3Dd50FerVV6VAyZnOViz_VwgMjCy2PKaDAH0nTn46bQ0velKLh3ymO2imC6YbP3-JAHKYrH_ei7Ypedzg4ZrAacZ5s8N5ZZ3Eg-f3E5_veNdkl9XeBHR-XStUcqkO6T7W_chDXSHyOEdEzreToCBba9R0rbkNncrZTaXAPa77WvxzRKFcU7fxRiHL1Qw_lhNzbJ_L1Opp3byU3XKVovOE-IJzIncbXm4IkwNoxyrpaBMt4JgxaYjlEvQCvRfuy7iK5UiJ81DtFEVz5EeCFaIeyAVNNFCoeEBgggYsGVqwXjLBKhSFwAFqlAG7Y_eURqZl7mrzm7xryYkuO_T1-Qze5k0J_3e8P7E7K1doickmr2toQzhAhZfG4l4wsyCbBt
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2006+IEEE+Intelligent+Vehicles+Symposium&rft.atitle=Real-time+Pedestrian+Detection+Using+LIDAR+and+Convolutional+Neural+Networks&rft.au=Szarvas%2C+M.&rft.au=Sakai%2C+U.&rft.au=Jun+Ogata&rft.date=2006-01-01&rft.pub=IEEE&rft.isbn=9784901122863&rft.issn=1931-0587&rft.spage=213&rft.epage=218&rft_id=info:doi/10.1109%2FIVS.2006.1689630&rft.externalDocID=1689630
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1931-0587&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1931-0587&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1931-0587&client=summon