Real-time Pedestrian Detection Using LIDAR and Convolutional Neural Networks
This paper presents a novel real-time pedestrian detection system utilizing a LIDAR-based object detector and convolutional neural network (CNN)-based image classifier. Our method achieves over 10 frames/second processing speed by constraining the search space using the range information from the LI...
Saved in:
Published in | 2006 IEEE Intelligent Vehicles Symposium pp. 213 - 218 |
---|---|
Main Authors | , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
2006
|
Subjects | |
Online Access | Get full text |
ISBN | 490112286X 9784901122863 |
ISSN | 1931-0587 |
DOI | 10.1109/IVS.2006.1689630 |
Cover
Loading…
Abstract | This paper presents a novel real-time pedestrian detection system utilizing a LIDAR-based object detector and convolutional neural network (CNN)-based image classifier. Our method achieves over 10 frames/second processing speed by constraining the search space using the range information from the LIDAR. The image region candidates detected by the LIDAR are confirmed for the presence of pedestrians by a convolutional neural network classifier. Our CNN classifier achieves high accuracy at a low computational cost thanks to its ability to automatically learn a small number of highly discriminating features. The focus of this paper is the evaluation of the effect of region of interest (ROI) detection on system accuracy and processing speed. The evaluation results indicate that the use of the LIDAR-based ROI detector can reduce the number of false positives by a factor of 2 and reduce the processing time by a factor of 4. The single frame detection accuracy of the system is above 90% when there is 1 false positive per second |
---|---|
AbstractList | This paper presents a novel real-time pedestrian detection system utilizing a LIDAR-based object detector and convolutional neural network (CNN)-based image classifier. Our method achieves over 10 frames/second processing speed by constraining the search space using the range information from the LIDAR. The image region candidates detected by the LIDAR are confirmed for the presence of pedestrians by a convolutional neural network classifier. Our CNN classifier achieves high accuracy at a low computational cost thanks to its ability to automatically learn a small number of highly discriminating features. The focus of this paper is the evaluation of the effect of region of interest (ROI) detection on system accuracy and processing speed. The evaluation results indicate that the use of the LIDAR-based ROI detector can reduce the number of false positives by a factor of 2 and reduce the processing time by a factor of 4. The single frame detection accuracy of the system is above 90% when there is 1 false positive per second |
Author | Sakai, U. Szarvas, M. Jun Ogata |
Author_xml | – sequence: 1 givenname: M. surname: Szarvas fullname: Szarvas, M. email: mate@d-itlab.co.jp organization: DENSO IT LABORATORY, INC., Tokyo, Japan. Email: mate@d-itlab.co.jp – sequence: 2 givenname: U. surname: Sakai fullname: Sakai, U. – sequence: 3 surname: Jun Ogata fullname: Jun Ogata |
BookMark | eNotj8tOwzAURC1RJJrCHomNfyDlXjsvL6uUR6QIUKGIXeUk18iQOih2Qfw9Bbo6ixkdzURs4gZHjJ0jzBFBXVbPj3MBkM0xK1Qm4YhFiQJEIYrsZcKmqCTGkBb5CYu8fwNIUyFwyuoV6T4Odkv8gTryYbTa8SUFaoMdHF976155XS0XK65dx8vBfQ797jfTPb-j3fiH8DWM7_6UHRvdezo7cMbW11dP5W1c399U5aKOLeZpiFswJiHMVIMACZgi7VAVudjPlaaRkFPeGtEIUEJ1qkDZKGpEJ0jvixIyOWMX_15LRJuP0W71-L05PJc_kHJNww |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/IVS.2006.1689630 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Xplore IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EndPage | 218 |
ExternalDocumentID | 1689630 |
Genre | orig-research |
GroupedDBID | 29I 29J 6IE 6IF 6IH 6IK 6IL 6IN AAJGR AAWTH ACGFS ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IPLJI M43 OCL RIE RIL RNS |
ID | FETCH-LOGICAL-i175t-c0ff4e169b10040f85d198720113fb307e7cf2b20929d9813b9eb2d2ea5d13063 |
IEDL.DBID | RIE |
ISBN | 490112286X 9784901122863 |
ISSN | 1931-0587 |
IngestDate | Wed Aug 27 02:53:29 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i175t-c0ff4e169b10040f85d198720113fb307e7cf2b20929d9813b9eb2d2ea5d13063 |
PageCount | 6 |
ParticipantIDs | ieee_primary_1689630 |
PublicationCentury | 2000 |
PublicationDate | 20060000 |
PublicationDateYYYYMMDD | 2006-01-01 |
PublicationDate_xml | – year: 2006 text: 20060000 |
PublicationDecade | 2000 |
PublicationTitle | 2006 IEEE Intelligent Vehicles Symposium |
PublicationTitleAbbrev | IVS |
PublicationYear | 2006 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0055221 ssj0000454314 |
Score | 1.8995966 |
Snippet | This paper presents a novel real-time pedestrian detection system utilizing a LIDAR-based object detector and convolutional neural network (CNN)-based image... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 213 |
SubjectTerms | Accidents Cameras Computational efficiency Detectors Laboratories Laser radar Neural networks Object detection Real time systems Sensor systems |
Title | Real-time Pedestrian Detection Using LIDAR and Convolutional Neural Networks |
URI | https://ieeexplore.ieee.org/document/1689630 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELZKJ1h4tIi3PDCSNokd1xkRpWpRQVWhqFsVx2cJgVIECQO_nrOTpoAYmPJQlDjO5fzd6ztCzns8ChiE0jOo69BA0QL_Oc29RMqACSGVBpfleyeGM34zj-YNclHXwgCASz6Djt11sXy9TAvrKusGQqK8oIG-gWJW1mrV_hRLJeeY2EstHCGuCMqIMprLkbS9-bgtswxDKSrmnfqYreKXftwdPd6XIYrqYT-6rrhFZ7BNblfDLXNNnjtFrjrp5y8mx_--zw5pr8v76KReuHZJA7I9svWNmbBFxlMEkJ5tPE8noME198hoH3KXuZVRl2lAx6P-5ZQmmaZ4549KiJMXahk_3MalmL-3yWxw_XA19KrGC94TooncS31jOAQiVpZPzjcy0tY3YbECMwq1AvRSE6rQR2ylY_yoKkYDXYeQ4IVog7B90syWGRwQGiF8UIJr3wjGWSJikfoALNGRsVx_8pC07LwsXktujUU1JUd_nz4mm2sXyAlp5m8FnCIoyNWZk4Yv5_6tIA |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8JAEN4QPKgXH2B8uwePFtrudtkejUhAgRAEw4203dnEaIrR4sFf7-y2FDUePPWRpt1up7PfvL4h5LLFA4-BLx2Nug4NFCXwn1PciaT0mBAyVmCzfIeiO-V3s2BWIVdlLQwA2OQzaJhdG8tXi2RpXGVNT0iUFzTQN3Dd50FerVV6VAyZnOViz_VwgMjCy2PKaDAH0nTn46bQ0velKLh3ymO2imC6YbP3-JAHKYrH_ei7Ypedzg4ZrAacZ5s8N5ZZ3Eg-f3E5_veNdkl9XeBHR-XStUcqkO6T7W_chDXSHyOEdEzreToCBba9R0rbkNncrZTaXAPa77WvxzRKFcU7fxRiHL1Qw_lhNzbJ_L1Opp3byU3XKVovOE-IJzIncbXm4IkwNoxyrpaBMt4JgxaYjlEvQCvRfuy7iK5UiJ81DtFEVz5EeCFaIeyAVNNFCoeEBgggYsGVqwXjLBKhSFwAFqlAG7Y_eURqZl7mrzm7xryYkuO_T1-Qze5k0J_3e8P7E7K1doickmr2toQzhAhZfG4l4wsyCbBt |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2006+IEEE+Intelligent+Vehicles+Symposium&rft.atitle=Real-time+Pedestrian+Detection+Using+LIDAR+and+Convolutional+Neural+Networks&rft.au=Szarvas%2C+M.&rft.au=Sakai%2C+U.&rft.au=Jun+Ogata&rft.date=2006-01-01&rft.pub=IEEE&rft.isbn=9784901122863&rft.issn=1931-0587&rft.spage=213&rft.epage=218&rft_id=info:doi/10.1109%2FIVS.2006.1689630&rft.externalDocID=1689630 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1931-0587&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1931-0587&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1931-0587&client=summon |