Farmland Scene Classification Based on Convolutional Neural Network
This paper proposed a farmland scene classification method based on CNN (Convolutional neural network). The farmland image datasets are divided into 4 types, namely, Crops_field, House_field, Not_farming_field and Woods_field. There are 100 pictures in each type, 80 images in each type are used as t...
Saved in:
Published in | 2016 International Conference on Cyberworlds (CW) pp. 159 - 162 |
---|---|
Main Authors | , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.09.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This paper proposed a farmland scene classification method based on CNN (Convolutional neural network). The farmland image datasets are divided into 4 types, namely, Crops_field, House_field, Not_farming_field and Woods_field. There are 100 pictures in each type, 80 images in each type are used as training sets, and the remaining 20 images are processed as test sets. Design a CNN with 2 convolution layers and 2 sub sample layers.In the training process, input images are restricted to 64*64, and the convolutional kernel is 5*5. Use the opensource toolkit of deep learning namely Tensorflow as the realization platform. After 700 times trainings, we validated the effects on the dataset, The corresponding correct rates of the four scenes are 79%, 82%, 76% and 75%. The result show that this method can achieve satisfactory effect. |
---|---|
AbstractList | This paper proposed a farmland scene classification method based on CNN (Convolutional neural network). The farmland image datasets are divided into 4 types, namely, Crops_field, House_field, Not_farming_field and Woods_field. There are 100 pictures in each type, 80 images in each type are used as training sets, and the remaining 20 images are processed as test sets. Design a CNN with 2 convolution layers and 2 sub sample layers.In the training process, input images are restricted to 64*64, and the convolutional kernel is 5*5. Use the opensource toolkit of deep learning namely Tensorflow as the realization platform. After 700 times trainings, we validated the effects on the dataset, The corresponding correct rates of the four scenes are 79%, 82%, 76% and 75%. The result show that this method can achieve satisfactory effect. |
Author | Yang Yunong Chen Bingqi Zhu Deli |
Author_xml | – sequence: 1 surname: Zhu Deli fullname: Zhu Deli email: zhudeli@cau.edu.cn organization: Coll. of Eng., China Agric. Univ., Beijing, China – sequence: 2 surname: Chen Bingqi fullname: Chen Bingqi email: fbcbq@163.com organization: Coll. of Eng., China Agric. Univ., Beijing, China – sequence: 3 surname: Yang Yunong fullname: Yang Yunong email: yanhong@cqnu.edu.cn organization: Coll. of Comput. & Inf. Sci., Chongqing Normal Univ., Chongqing, China |
BookMark | eNotjLtOwzAUQI0EA5QurCz5gYTrV-yMYFFAqmBoEWN1nVxLFqmNnBTE3_OcztEZzhk7TjkRYxccGs6hu3IvjQDeNlIesWVnLNfQgZAg9SlzKyz7EdNQbXpKVLkRpymG2OMcc6pucKKh-haX03seDz8Rx-qRDuUX80cur-fsJOA40fKfC_a8ut26-3r9dPfgrtd15EbPdQ_UC7SWfKdEENaYwQpQQZLqCdGbFrwy0A1GDNoq4UFCUMZS4Oil8HLBLv--kYh2byXusXzujNEtV0p-AVJURjE |
CODEN | IEEPAD |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/CW.2016.33 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE/IET Electronic Library IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library (IEL) (UW System Shared) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISBN | 9781509023035 1509023038 |
EndPage | 162 |
ExternalDocumentID | 7756144 |
Genre | orig-research |
GroupedDBID | 6IE 6IL CBEJK RIE RIL |
ID | FETCH-LOGICAL-i175t-c0ec2a88eb942f2877d8204f3e4ceaab760b4709d72d5842b030f478ef1ab32b3 |
IEDL.DBID | RIE |
IngestDate | Thu Jun 29 18:38:03 EDT 2023 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i175t-c0ec2a88eb942f2877d8204f3e4ceaab760b4709d72d5842b030f478ef1ab32b3 |
PageCount | 4 |
ParticipantIDs | ieee_primary_7756144 |
PublicationCentury | 2000 |
PublicationDate | 2016-Sept. |
PublicationDateYYYYMMDD | 2016-09-01 |
PublicationDate_xml | – month: 09 year: 2016 text: 2016-Sept. |
PublicationDecade | 2010 |
PublicationTitle | 2016 International Conference on Cyberworlds (CW) |
PublicationTitleAbbrev | CYBER |
PublicationYear | 2016 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
Score | 1.6459943 |
Snippet | This paper proposed a farmland scene classification method based on CNN (Convolutional neural network). The farmland image datasets are divided into 4 types,... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 159 |
SubjectTerms | CNN Convolution deep learning deep neural network Feature extraction Kernel Machine learning Neural networks Neurons Training |
Title | Farmland Scene Classification Based on Convolutional Neural Network |
URI | https://ieeexplore.ieee.org/document/7756144 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED61nZgAtYi3PDCSNLFNnKxUVBUSCAkqulV-nCUEtKhKGfj1nJ1QEGJgsuXhYl8Sf3589x3AmRFVKZy0ic2cS6STWWKk8Yl1ymlhkJa8kW1xW0ym8np2MevA-SYWBhEj-QzTUI13-W5p1-GobKhU0K2UXejSxq2J1WoVR_OsGo4eA1OrSEMO3B-ZUiJQjLfh5usRDT_kOV3XJrUfv9QX_9uHHRh8h-Sxuw3Y7EIHF30YjfXqNVAT2b2lOYvFDJeB-xPdzS4JoRyjCtl4bz8x_cKCHkcsIgF8ANPx1cNokrRZEZIngvqanIqW67JEU0nuacOjHKG49AKlRa2NKjIjVVY5xR2tLrih39hLVaLPtRHciD3oLZYL3AdWcuVorkPCKC0NRzKoc24KLUufe1EdQD84YP7WCF_M27Ef_t18BFvB_w0B6xh69WqNJ4TYtTmNr-oTVBOZiA |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED6VMsAEqEW8ycBI0sRx42SloirQVki0olvlx0VCQIuqhIFfz9kJBSEGJlsebOf8-Bz7u-8ALlScpbHh2tehMT43PPQVV7mvjTAyVkhHXse2GCeDKb-ddWcNuFz7wiCiI59hYLPuLd8sdWmvyjpCWN1KvgGbhPtdVnlr1ZqjUZh1eo-Wq5UENgruj1gpDir6OzD6aqRiiDwHZaEC_fFLf_G_vdiF9rdTnne_hps9aOCiBb2-XL1acqL3oGnX8lyMS8v-cQb3rgijjEcZquO9nmTyxbOKHC5xFPA2TPvXk97Ar-Mi-E8E9gWZFTWTaYoq4yynXx5hCMd5HiPXKKUSSai4CDMjmKHzBVO0kHMuUswjqWKm4n1oLpYLPAAvZcLQboeEUpIrhlShjJhKJE_zKI-zQ2hZA8zfKumLef3tR38Xn8PWYDIazoc347tj2LZjUdGxTqBZrEo8Jfwu1Jkbtk-JopzS |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2016+International+Conference+on+Cyberworlds+%28CW%29&rft.atitle=Farmland+Scene+Classification+Based+on+Convolutional+Neural+Network&rft.au=Zhu+Deli&rft.au=Chen+Bingqi&rft.au=Yang+Yunong&rft.date=2016-09-01&rft.pub=IEEE&rft.spage=159&rft.epage=162&rft_id=info:doi/10.1109%2FCW.2016.33&rft.externalDocID=7756144 |