Farmland Scene Classification Based on Convolutional Neural Network

This paper proposed a farmland scene classification method based on CNN (Convolutional neural network). The farmland image datasets are divided into 4 types, namely, Crops_field, House_field, Not_farming_field and Woods_field. There are 100 pictures in each type, 80 images in each type are used as t...

Full description

Saved in:
Bibliographic Details
Published in2016 International Conference on Cyberworlds (CW) pp. 159 - 162
Main Authors Zhu Deli, Chen Bingqi, Yang Yunong
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.09.2016
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This paper proposed a farmland scene classification method based on CNN (Convolutional neural network). The farmland image datasets are divided into 4 types, namely, Crops_field, House_field, Not_farming_field and Woods_field. There are 100 pictures in each type, 80 images in each type are used as training sets, and the remaining 20 images are processed as test sets. Design a CNN with 2 convolution layers and 2 sub sample layers.In the training process, input images are restricted to 64*64, and the convolutional kernel is 5*5. Use the opensource toolkit of deep learning namely Tensorflow as the realization platform. After 700 times trainings, we validated the effects on the dataset, The corresponding correct rates of the four scenes are 79%, 82%, 76% and 75%. The result show that this method can achieve satisfactory effect.
AbstractList This paper proposed a farmland scene classification method based on CNN (Convolutional neural network). The farmland image datasets are divided into 4 types, namely, Crops_field, House_field, Not_farming_field and Woods_field. There are 100 pictures in each type, 80 images in each type are used as training sets, and the remaining 20 images are processed as test sets. Design a CNN with 2 convolution layers and 2 sub sample layers.In the training process, input images are restricted to 64*64, and the convolutional kernel is 5*5. Use the opensource toolkit of deep learning namely Tensorflow as the realization platform. After 700 times trainings, we validated the effects on the dataset, The corresponding correct rates of the four scenes are 79%, 82%, 76% and 75%. The result show that this method can achieve satisfactory effect.
Author Yang Yunong
Chen Bingqi
Zhu Deli
Author_xml – sequence: 1
  surname: Zhu Deli
  fullname: Zhu Deli
  email: zhudeli@cau.edu.cn
  organization: Coll. of Eng., China Agric. Univ., Beijing, China
– sequence: 2
  surname: Chen Bingqi
  fullname: Chen Bingqi
  email: fbcbq@163.com
  organization: Coll. of Eng., China Agric. Univ., Beijing, China
– sequence: 3
  surname: Yang Yunong
  fullname: Yang Yunong
  email: yanhong@cqnu.edu.cn
  organization: Coll. of Comput. & Inf. Sci., Chongqing Normal Univ., Chongqing, China
BookMark eNotjLtOwzAUQI0EA5QurCz5gYTrV-yMYFFAqmBoEWN1nVxLFqmNnBTE3_OcztEZzhk7TjkRYxccGs6hu3IvjQDeNlIesWVnLNfQgZAg9SlzKyz7EdNQbXpKVLkRpymG2OMcc6pucKKh-haX03seDz8Rx-qRDuUX80cur-fsJOA40fKfC_a8ut26-3r9dPfgrtd15EbPdQ_UC7SWfKdEENaYwQpQQZLqCdGbFrwy0A1GDNoq4UFCUMZS4Oil8HLBLv--kYh2byXusXzujNEtV0p-AVJURjE
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/CW.2016.33
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE/IET Electronic Library
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL) (UW System Shared)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781509023035
1509023038
EndPage 162
ExternalDocumentID 7756144
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i175t-c0ec2a88eb942f2877d8204f3e4ceaab760b4709d72d5842b030f478ef1ab32b3
IEDL.DBID RIE
IngestDate Thu Jun 29 18:38:03 EDT 2023
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-c0ec2a88eb942f2877d8204f3e4ceaab760b4709d72d5842b030f478ef1ab32b3
PageCount 4
ParticipantIDs ieee_primary_7756144
PublicationCentury 2000
PublicationDate 2016-Sept.
PublicationDateYYYYMMDD 2016-09-01
PublicationDate_xml – month: 09
  year: 2016
  text: 2016-Sept.
PublicationDecade 2010
PublicationTitle 2016 International Conference on Cyberworlds (CW)
PublicationTitleAbbrev CYBER
PublicationYear 2016
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.6459943
Snippet This paper proposed a farmland scene classification method based on CNN (Convolutional neural network). The farmland image datasets are divided into 4 types,...
SourceID ieee
SourceType Publisher
StartPage 159
SubjectTerms CNN
Convolution
deep learning
deep neural network
Feature extraction
Kernel
Machine learning
Neural networks
Neurons
Training
Title Farmland Scene Classification Based on Convolutional Neural Network
URI https://ieeexplore.ieee.org/document/7756144
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED61nZgAtYi3PDCSNLFNnKxUVBUSCAkqulV-nCUEtKhKGfj1nJ1QEGJgsuXhYl8Sf3589x3AmRFVKZy0ic2cS6STWWKk8Yl1ymlhkJa8kW1xW0ym8np2MevA-SYWBhEj-QzTUI13-W5p1-GobKhU0K2UXejSxq2J1WoVR_OsGo4eA1OrSEMO3B-ZUiJQjLfh5usRDT_kOV3XJrUfv9QX_9uHHRh8h-Sxuw3Y7EIHF30YjfXqNVAT2b2lOYvFDJeB-xPdzS4JoRyjCtl4bz8x_cKCHkcsIgF8ANPx1cNokrRZEZIngvqanIqW67JEU0nuacOjHKG49AKlRa2NKjIjVVY5xR2tLrih39hLVaLPtRHciD3oLZYL3AdWcuVorkPCKC0NRzKoc24KLUufe1EdQD84YP7WCF_M27Ef_t18BFvB_w0B6xh69WqNJ4TYtTmNr-oTVBOZiA
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED6VMsAEqEW8ycBI0sRx42SloirQVki0olvlx0VCQIuqhIFfz9kJBSEGJlsebOf8-Bz7u-8ALlScpbHh2tehMT43PPQVV7mvjTAyVkhHXse2GCeDKb-ddWcNuFz7wiCiI59hYLPuLd8sdWmvyjpCWN1KvgGbhPtdVnlr1ZqjUZh1eo-Wq5UENgruj1gpDir6OzD6aqRiiDwHZaEC_fFLf_G_vdiF9rdTnne_hps9aOCiBb2-XL1acqL3oGnX8lyMS8v-cQb3rgijjEcZquO9nmTyxbOKHC5xFPA2TPvXk97Ar-Mi-E8E9gWZFTWTaYoq4yynXx5hCMd5HiPXKKUSSai4CDMjmKHzBVO0kHMuUswjqWKm4n1oLpYLPAAvZcLQboeEUpIrhlShjJhKJE_zKI-zQ2hZA8zfKumLef3tR38Xn8PWYDIazoc347tj2LZjUdGxTqBZrEo8Jfwu1Jkbtk-JopzS
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2016+International+Conference+on+Cyberworlds+%28CW%29&rft.atitle=Farmland+Scene+Classification+Based+on+Convolutional+Neural+Network&rft.au=Zhu+Deli&rft.au=Chen+Bingqi&rft.au=Yang+Yunong&rft.date=2016-09-01&rft.pub=IEEE&rft.spage=159&rft.epage=162&rft_id=info:doi/10.1109%2FCW.2016.33&rft.externalDocID=7756144