A practical yield prediction approach using inline defect metrology data for system-on-chip integrated circuits

Integrated circuit (IC) yield prediction which focuses on modelling the IC yield characteristics using manufacturing data is an extremely critical task to pursue, this is because it directly impacts the decision making process to improve manufacturing quality, reliability and reduce cost. In this wo...

Full description

Saved in:
Bibliographic Details
Published in2017 13th IEEE Conference on Automation Science and Engineering (CASE) pp. 744 - 749
Main Authors Yuting Kong, Dong Ni
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.08.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Integrated circuit (IC) yield prediction which focuses on modelling the IC yield characteristics using manufacturing data is an extremely critical task to pursue, this is because it directly impacts the decision making process to improve manufacturing quality, reliability and reduce cost. In this work, we propose a practical yield prediction approach for system-on-chip (SoC) ICs. To achieve finer granularity in modelling and optimization, and better generality across different SoCs, different functional blocks in the SoC are modelled individually. Partial Least Squares (PLS) and Support Vector Regression (SVR) algorithm are used to build yield models, and the prediction results from both algorithms are analyzed and compared. It is shown that SVR has slightly better prediction performance than PLS. Comparison is also done among different functional blocks as well as different wafer radial regions. Static random access memory (SRAM) block and wafer center appear to have better yield predictability from inline defect data among their peers, which suggests inline monitoring scheme may need to be further optimized to capture potential yield impact to other types of SoC functional blocks or wafer edge region.
AbstractList Integrated circuit (IC) yield prediction which focuses on modelling the IC yield characteristics using manufacturing data is an extremely critical task to pursue, this is because it directly impacts the decision making process to improve manufacturing quality, reliability and reduce cost. In this work, we propose a practical yield prediction approach for system-on-chip (SoC) ICs. To achieve finer granularity in modelling and optimization, and better generality across different SoCs, different functional blocks in the SoC are modelled individually. Partial Least Squares (PLS) and Support Vector Regression (SVR) algorithm are used to build yield models, and the prediction results from both algorithms are analyzed and compared. It is shown that SVR has slightly better prediction performance than PLS. Comparison is also done among different functional blocks as well as different wafer radial regions. Static random access memory (SRAM) block and wafer center appear to have better yield predictability from inline defect data among their peers, which suggests inline monitoring scheme may need to be further optimized to capture potential yield impact to other types of SoC functional blocks or wafer edge region.
Author Yuting Kong
Dong Ni
Author_xml – sequence: 1
  surname: Yuting Kong
  fullname: Yuting Kong
  organization: Coll. of Control Sci. & Eng., Zhejiang Univ., Hangzhou, China
– sequence: 2
  surname: Dong Ni
  fullname: Dong Ni
  email: dni@zju.edu.cn
  organization: Coll. of Control Sci. & Eng., Zhejiang Univ., Hangzhou, China
BookMark eNotkM9qAyEYxG1poWmaF2gvvsCmfm509RhC-gcCObQ9B1c_E8tmXdQc9u270Jx-zDAMzDySuz72SMgzsCUA06-b_fpru-QMmqXiQoKub8hCNwoE00xObG7JjIOESjGlH8gi51_GGGipuBIzEtd0SMaWYE1Hx4CdmzS6MDmxp2YYUjT2RC859Eca-i70SB16tIWesaTYxeNInSmG-phoHnPBcxX7yp7CMOULHpMp6KgNyV5CyU_k3psu4-LKOfl5235vPqrd_v1zs95VARpRKst4g-DBc8844ytjXWvRtdwBCLkSXnkPrp02KWmbWrSo1Uq3LUhnrEVbz8nLf29AxMOQwtmk8XC9qP4DhPxfdQ
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/COASE.2017.8256193
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE/IET Electronic Library
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 9781509067817
1509067817
EISSN 2161-8089
EndPage 749
ExternalDocumentID 8256193
Genre orig-research
GroupedDBID 29I
6IE
6IF
6IH
6IK
6IL
6IN
AAJGR
AAWTH
ACGFS
ADZIZ
AKRWK
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IPLJI
M43
OCL
RIE
RIL
ID FETCH-LOGICAL-i175t-c027e1f1f2f02024acdbcedb2d115645f8ff1db80886c735be9849bb16daccec3
IEDL.DBID RIE
IngestDate Wed Aug 27 02:22:05 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-c027e1f1f2f02024acdbcedb2d115645f8ff1db80886c735be9849bb16daccec3
PageCount 6
ParticipantIDs ieee_primary_8256193
PublicationCentury 2000
PublicationDate 2017-Aug.
PublicationDateYYYYMMDD 2017-08-01
PublicationDate_xml – month: 08
  year: 2017
  text: 2017-Aug.
PublicationDecade 2010
PublicationTitle 2017 13th IEEE Conference on Automation Science and Engineering (CASE)
PublicationTitleAbbrev COASE
PublicationYear 2017
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0001968285
ssj0060811
Score 1.6685041
Snippet Integrated circuit (IC) yield prediction which focuses on modelling the IC yield characteristics using manufacturing data is an extremely critical task to...
SourceID ieee
SourceType Publisher
StartPage 744
SubjectTerms Fabrication
Inspection
Integrated circuit modeling
Predictive models
Semiconductor device modeling
Support vector machines
Title A practical yield prediction approach using inline defect metrology data for system-on-chip integrated circuits
URI https://ieeexplore.ieee.org/document/8256193
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV05T8MwFLbaTrBwtIhbHhhxWudsxqpqVSEVkKBStyrPfi4RkFQlGcqvx87RAmJgipPBsvyid_n7PhNyE3KMej2ULNJPpusvYBDaHovAAw6gXC5Ma2B6709m7t3cmzfI7ZYLg4gF-AwtMyzO8mUqctMq6-pqRuf7TpM0deFWcrV2_ZTQN2JstRf2dajjNUmmF3aHD4OnkUFyBVY1y4_rVIpoMj4g03odJYjk1cozsMTnL4nG_y70kHR2vD36uI1IR6SByTHZ_yY52CbpgFbEqOiNbgx8Tb-bwxpjIForjFMDh1_SuJDRoBIN5oO-owG1p8sNNbBSqrNdWupAszRh4iVe0a32hKQiXos8zj46ZDYePQ8nrLp0gcU6k8iY0HUqcsWVrXQmabuRkCBQgi250ZXxVF8pLqGvvZMvAscDDPtuCMB9GQmBwjkhrSRN8JRQDwUEytFOAQPXA087XuW7SoE2VgDonpG22brFqtTVWFS7dv735wuyZ8xXgu8uSStb53ilE4IMros_4Qt-Cric
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT8IwGG4QD-rFDzB-24NHC3SsGzsSAkEFNBESbmRv-xYXlREcB_z1thsfajx4WrdD0_Rd3q8-z1NCbgKOYaWCioXmyUz9BQwCR7AQBHAA7XJpWwPdntceuPdDMcyR2zUXBhFT8BmW7DA9y1exnNtWWdlUMybfr26RbRP3hZOxtTYdlcCzcmwrP-yZYMdXNJlKUG481p-bFsvll5bz_LhQJY0nrX3SXa0kg5G8luYJlOTnL5HG_y71gBQ3zD36tI5JhySHkyOy9010sEDiOl1So8I3urAANvNuj2usiehKY5xaQPyYRqmQBlVoUR_0HS2sPR4vqAWWUpPv0kwJmsUTJl-iKV2rTygqo5mcR8lHkQxazX6jzZbXLrDI5BIJk6ZSRa65drTJJR03lAokKnAUt8oyQte05gpqxj950q8KwKDmBgDcU6GUKKvHJD-JJ3hCqEAJvq4at4C-K0AY16s9V2swxvIB3VNSsFs3mmbKGqPlrp39_fma7LT73c6oc9d7OCe71pQZFO-C5JPZHC9NepDAVfpXfAFMMbvm
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2017+13th+IEEE+Conference+on+Automation+Science+and+Engineering+%28CASE%29&rft.atitle=A+practical+yield+prediction+approach+using+inline+defect+metrology+data+for+system-on-chip+integrated+circuits&rft.au=Yuting+Kong&rft.au=Dong+Ni&rft.date=2017-08-01&rft.pub=IEEE&rft.eissn=2161-8089&rft.spage=744&rft.epage=749&rft_id=info:doi/10.1109%2FCOASE.2017.8256193&rft.externalDocID=8256193