Knowledge Learning for Cognitive Business Conversations

Cognitive conversation services are increasingly popular among lots of business companies. Cognitive conversation services enable a business company to expose its business functionalities directly to its customers in a user-friendly conversational mode, usually in the format of procedure dialog. The...

Full description

Saved in:
Bibliographic Details
Published in2017 IEEE International Conference on Cognitive Computing (ICCC) pp. 128 - 131
Main Authors Lijun Mei, Qicheng Li, Yipeng Yu, Jie Ma
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.06.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Cognitive conversation services are increasingly popular among lots of business companies. Cognitive conversation services enable a business company to expose its business functionalities directly to its customers in a user-friendly conversational mode, usually in the format of procedure dialog. The main challenge, however, is the impractical and insufficient creation process to manually build all such procedure dialogs. It also remains unclear how to optimize such procedure dialogs. In this paper, we propose a framework for incrementally mining procedure dialogs from business conversations. Our framework takes the procedure dialogs as initial input to generate machine learning models, then incorporates runtime user interactions to update the model using reinforcement learning, and finally transforms the refined model into the updates on existing procedure dialogs (or derive new dialog candidates) in a human-readable format so that Subject Matter Experts (SMEs) can understand and intervene in the further improvement process.
AbstractList Cognitive conversation services are increasingly popular among lots of business companies. Cognitive conversation services enable a business company to expose its business functionalities directly to its customers in a user-friendly conversational mode, usually in the format of procedure dialog. The main challenge, however, is the impractical and insufficient creation process to manually build all such procedure dialogs. It also remains unclear how to optimize such procedure dialogs. In this paper, we propose a framework for incrementally mining procedure dialogs from business conversations. Our framework takes the procedure dialogs as initial input to generate machine learning models, then incorporates runtime user interactions to update the model using reinforcement learning, and finally transforms the refined model into the updates on existing procedure dialogs (or derive new dialog candidates) in a human-readable format so that Subject Matter Experts (SMEs) can understand and intervene in the further improvement process.
Author Yipeng Yu
Lijun Mei
Jie Ma
Qicheng Li
Author_xml – sequence: 1
  surname: Lijun Mei
  fullname: Lijun Mei
  email: meilijun@cn.ibm.com
  organization: IBM Res. - China, Beijing, China
– sequence: 2
  surname: Qicheng Li
  fullname: Qicheng Li
  email: liqic@cn.ibm.com
  organization: IBM Res. - China, Beijing, China
– sequence: 3
  surname: Yipeng Yu
  fullname: Yipeng Yu
  email: yuyyp@cn.ibm.com
  organization: IBM Res. - China, Beijing, China
– sequence: 4
  surname: Jie Ma
  fullname: Jie Ma
  email: bjmajie@cn.ibm.com
  organization: IBM Res. - China, Beijing, China
BookMark eNotzLFOwzAQgGEjwUBLHwCx5AUSzucmZ49gBRoRiYXOlZ1eIkvFQXYo4u1BgumXvuFfics4RxbiVkIlJZj7rm3bqrPWVgiSKlQXYiVrpRsE0PJa0Eucv058nLjo2aUY4lSMcyrsPMWwhDMXj585RM75l-KZU3ZLmGO-EVejO2Xe_Hct9k_tm92V_etzZx_6Mkiql9IzMWpP6Bo0yhBLqdERO2BvjiMiEXkGg43ZKu29GgH8dqAayIxyGNRa3P19AzMfPlJ4d-n7oAENKqV-ALQeQu8
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/IEEE.ICCC.2017.23
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library Online
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library Online
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 1538620081
9781538620083
EndPage 131
ExternalDocumentID 8029233
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i175t-be7e28b72a629397e1182a7ea0eb9df22777be09269438bb3f00b4c75079f1cc3
IEDL.DBID RIE
IngestDate Thu Jun 29 18:36:52 EDT 2023
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-be7e28b72a629397e1182a7ea0eb9df22777be09269438bb3f00b4c75079f1cc3
PageCount 4
ParticipantIDs ieee_primary_8029233
PublicationCentury 2000
PublicationDate 2017-June
PublicationDateYYYYMMDD 2017-06-01
PublicationDate_xml – month: 06
  year: 2017
  text: 2017-June
PublicationDecade 2010
PublicationTitle 2017 IEEE International Conference on Cognitive Computing (ICCC)
PublicationTitleAbbrev COGCOMP
PublicationYear 2017
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.6753471
Snippet Cognitive conversation services are increasingly popular among lots of business companies. Cognitive conversation services enable a business company to expose...
SourceID ieee
SourceType Publisher
StartPage 128
SubjectTerms Cognitive Conversation
Companies
Hardware
Learning (artificial intelligence)
Procedure Dialog
Reinforcement Learning
Runtime
Transforms
Wireless fidelity
Title Knowledge Learning for Cognitive Business Conversations
URI https://ieeexplore.ieee.org/document/8029233
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NS8NAEB3anjyptOI3OXg06WbTZHbPwVKVigcLvZXsZiIipCLJxV_f2XxUEQ_ewkLY7M6GNzP73gzAjQlFIRRpX1iXuskt-gZl7PNZijkSY48jdmrk5VOyWM0e1vF6ALd7LQwRNeQzCtxjc5efb23tUmVTJST7I9EQhqh1q9XqLipDoacuOgru0zR1hC0MXAOiHw1TGryYH8Kyn6mlibwHdWUC-_WrCON_P-UIJt_KPO95jznHMKByDPjYJ8a8rlzqq8e-qJf21CCvp7fzUOl4GG2abgKr-d1LuvC7hgj-G6N85RtCkor3MksYpTWSiw4ypEyQ0XkhJSIaEtqpUyNlTFQIYWaWnQLURWhtdAKjclvSKXiEkdGy4P-Z8TmPpcqtSvgFto4IszA5g7Fb9OajrXmx6dZ7_vfwBRy4PW8pVJcwqj5rumKwrsx1Y6UdEqKVRw
link.rule.ids 310,311,783,787,792,793,799,27937,55086
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwED2VMsAEqEV8k4GRpI7TxPYcUbX0Qwyt1K2KnQtCSGmFkoVfzzkfBSEGtshSlNhO9N6d37sDeNA-y5hE5TJjUzepEa4WPHTpWwopEiPGEVo38nwRjVfD53W47sDj3guDiJX4DD17WZ3lp1tT2lTZQDJOfCQ4gEPi1TKq3VrNUaXP1MDGR94kjmMr2RKebUH0o2VKhRijE5i3z6qFIu9eWWjPfP4qw_jflzmF_rc3z3nZo84ZdDDvgZi2qTGnKZj66hAbdeJWHOS0Ancayq0So07U9WE1elrGY7dpieC-Ec4XrkaBXNJqJhHhtBJo44NEYMJQqzTjXAihkSnrTw2k1kHGmB4aogVCZb4xwTl0822OF-CgCLTiGf3RhNBpyGVqZEQ30P4wP_GjS-jZSW92ddWLTTPfq7-H7-FovJzPNrPJYnoNx3b9a0HVDXSLjxJvCboLfVft2BcSI5iS
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2017+IEEE+International+Conference+on+Cognitive+Computing+%28ICCC%29&rft.atitle=Knowledge+Learning+for+Cognitive+Business+Conversations&rft.au=Lijun+Mei&rft.au=Qicheng+Li&rft.au=Yipeng+Yu&rft.au=Jie+Ma&rft.date=2017-06-01&rft.pub=IEEE&rft.spage=128&rft.epage=131&rft_id=info:doi/10.1109%2FIEEE.ICCC.2017.23&rft.externalDocID=8029233