Knowledge Learning for Cognitive Business Conversations
Cognitive conversation services are increasingly popular among lots of business companies. Cognitive conversation services enable a business company to expose its business functionalities directly to its customers in a user-friendly conversational mode, usually in the format of procedure dialog. The...
Saved in:
Published in | 2017 IEEE International Conference on Cognitive Computing (ICCC) pp. 128 - 131 |
---|---|
Main Authors | , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.06.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Cognitive conversation services are increasingly popular among lots of business companies. Cognitive conversation services enable a business company to expose its business functionalities directly to its customers in a user-friendly conversational mode, usually in the format of procedure dialog. The main challenge, however, is the impractical and insufficient creation process to manually build all such procedure dialogs. It also remains unclear how to optimize such procedure dialogs. In this paper, we propose a framework for incrementally mining procedure dialogs from business conversations. Our framework takes the procedure dialogs as initial input to generate machine learning models, then incorporates runtime user interactions to update the model using reinforcement learning, and finally transforms the refined model into the updates on existing procedure dialogs (or derive new dialog candidates) in a human-readable format so that Subject Matter Experts (SMEs) can understand and intervene in the further improvement process. |
---|---|
AbstractList | Cognitive conversation services are increasingly popular among lots of business companies. Cognitive conversation services enable a business company to expose its business functionalities directly to its customers in a user-friendly conversational mode, usually in the format of procedure dialog. The main challenge, however, is the impractical and insufficient creation process to manually build all such procedure dialogs. It also remains unclear how to optimize such procedure dialogs. In this paper, we propose a framework for incrementally mining procedure dialogs from business conversations. Our framework takes the procedure dialogs as initial input to generate machine learning models, then incorporates runtime user interactions to update the model using reinforcement learning, and finally transforms the refined model into the updates on existing procedure dialogs (or derive new dialog candidates) in a human-readable format so that Subject Matter Experts (SMEs) can understand and intervene in the further improvement process. |
Author | Yipeng Yu Lijun Mei Jie Ma Qicheng Li |
Author_xml | – sequence: 1 surname: Lijun Mei fullname: Lijun Mei email: meilijun@cn.ibm.com organization: IBM Res. - China, Beijing, China – sequence: 2 surname: Qicheng Li fullname: Qicheng Li email: liqic@cn.ibm.com organization: IBM Res. - China, Beijing, China – sequence: 3 surname: Yipeng Yu fullname: Yipeng Yu email: yuyyp@cn.ibm.com organization: IBM Res. - China, Beijing, China – sequence: 4 surname: Jie Ma fullname: Jie Ma email: bjmajie@cn.ibm.com organization: IBM Res. - China, Beijing, China |
BookMark | eNotzLFOwzAQgGEjwUBLHwCx5AUSzucmZ49gBRoRiYXOlZ1eIkvFQXYo4u1BgumXvuFfics4RxbiVkIlJZj7rm3bqrPWVgiSKlQXYiVrpRsE0PJa0Eucv058nLjo2aUY4lSMcyrsPMWwhDMXj585RM75l-KZU3ZLmGO-EVejO2Xe_Hct9k_tm92V_etzZx_6Mkiql9IzMWpP6Bo0yhBLqdERO2BvjiMiEXkGg43ZKu29GgH8dqAayIxyGNRa3P19AzMfPlJ4d-n7oAENKqV-ALQeQu8 |
CODEN | IEEPAD |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/IEEE.ICCC.2017.23 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library Online IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library Online url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISBN | 1538620081 9781538620083 |
EndPage | 131 |
ExternalDocumentID | 8029233 |
Genre | orig-research |
GroupedDBID | 6IE 6IL CBEJK RIE RIL |
ID | FETCH-LOGICAL-i175t-be7e28b72a629397e1182a7ea0eb9df22777be09269438bb3f00b4c75079f1cc3 |
IEDL.DBID | RIE |
IngestDate | Thu Jun 29 18:36:52 EDT 2023 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i175t-be7e28b72a629397e1182a7ea0eb9df22777be09269438bb3f00b4c75079f1cc3 |
PageCount | 4 |
ParticipantIDs | ieee_primary_8029233 |
PublicationCentury | 2000 |
PublicationDate | 2017-June |
PublicationDateYYYYMMDD | 2017-06-01 |
PublicationDate_xml | – month: 06 year: 2017 text: 2017-June |
PublicationDecade | 2010 |
PublicationTitle | 2017 IEEE International Conference on Cognitive Computing (ICCC) |
PublicationTitleAbbrev | COGCOMP |
PublicationYear | 2017 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
Score | 1.6753471 |
Snippet | Cognitive conversation services are increasingly popular among lots of business companies. Cognitive conversation services enable a business company to expose... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 128 |
SubjectTerms | Cognitive Conversation Companies Hardware Learning (artificial intelligence) Procedure Dialog Reinforcement Learning Runtime Transforms Wireless fidelity |
Title | Knowledge Learning for Cognitive Business Conversations |
URI | https://ieeexplore.ieee.org/document/8029233 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NS8NAEB3anjyptOI3OXg06WbTZHbPwVKVigcLvZXsZiIipCLJxV_f2XxUEQ_ewkLY7M6GNzP73gzAjQlFIRRpX1iXuskt-gZl7PNZijkSY48jdmrk5VOyWM0e1vF6ALd7LQwRNeQzCtxjc5efb23tUmVTJST7I9EQhqh1q9XqLipDoacuOgru0zR1hC0MXAOiHw1TGryYH8Kyn6mlibwHdWUC-_WrCON_P-UIJt_KPO95jznHMKByDPjYJ8a8rlzqq8e-qJf21CCvp7fzUOl4GG2abgKr-d1LuvC7hgj-G6N85RtCkor3MksYpTWSiw4ypEyQ0XkhJSIaEtqpUyNlTFQIYWaWnQLURWhtdAKjclvSKXiEkdGy4P-Z8TmPpcqtSvgFto4IszA5g7Fb9OajrXmx6dZ7_vfwBRy4PW8pVJcwqj5rumKwrsx1Y6UdEqKVRw |
link.rule.ids | 310,311,783,787,792,793,799,27937,55086 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwED2VMsAEqEV8k4GRpI7TxPYcUbX0Qwyt1K2KnQtCSGmFkoVfzzkfBSEGtshSlNhO9N6d37sDeNA-y5hE5TJjUzepEa4WPHTpWwopEiPGEVo38nwRjVfD53W47sDj3guDiJX4DD17WZ3lp1tT2lTZQDJOfCQ4gEPi1TKq3VrNUaXP1MDGR94kjmMr2RKebUH0o2VKhRijE5i3z6qFIu9eWWjPfP4qw_jflzmF_rc3z3nZo84ZdDDvgZi2qTGnKZj66hAbdeJWHOS0Ancayq0So07U9WE1elrGY7dpieC-Ec4XrkaBXNJqJhHhtBJo44NEYMJQqzTjXAihkSnrTw2k1kHGmB4aogVCZb4xwTl0822OF-CgCLTiGf3RhNBpyGVqZEQ30P4wP_GjS-jZSW92ddWLTTPfq7-H7-FovJzPNrPJYnoNx3b9a0HVDXSLjxJvCboLfVft2BcSI5iS |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2017+IEEE+International+Conference+on+Cognitive+Computing+%28ICCC%29&rft.atitle=Knowledge+Learning+for+Cognitive+Business+Conversations&rft.au=Lijun+Mei&rft.au=Qicheng+Li&rft.au=Yipeng+Yu&rft.au=Jie+Ma&rft.date=2017-06-01&rft.pub=IEEE&rft.spage=128&rft.epage=131&rft_id=info:doi/10.1109%2FIEEE.ICCC.2017.23&rft.externalDocID=8029233 |