Fast Kernel-based method for anomaly detection
Anomaly detection (AD) involves detecting abnormality from normality and has a wide spectrum of applications in reality. Kernel-based methods for AD have been proven robust with diverse data distributions and offering good generalization ability. Stochastic gradient descent (SGD) method has recently...
Saved in:
Published in | 2016 International Joint Conference on Neural Networks (IJCNN) pp. 3211 - 3217 |
---|---|
Main Authors | , , , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.07.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Anomaly detection (AD) involves detecting abnormality from normality and has a wide spectrum of applications in reality. Kernel-based methods for AD have been proven robust with diverse data distributions and offering good generalization ability. Stochastic gradient descent (SGD) method has recently emerged as a promising framework to devise ultra-fast learning methods. In this paper, we conjoin the advantages of Kernel-based method and SGD-based method to propose fast learning methods for anomaly detection. We validate the proposed methods on 8 benchmark datasets in UCI repository and KDD cup 1999 dataset. The experimental results show that the proposed methods offer a comparable one-class classification accuracy while simultaneously achieving a significantly computational speed-up. |
---|---|
ISSN: | 2161-4407 |
DOI: | 10.1109/IJCNN.2016.7727609 |