Variable selection using the Lasso-Cox model with Bayesian regularization

Selection of prognostic genes associated with tumor has been a subject of considerable research in recent years. In order to solve the high-dimensional gene expression profiles, the Lasso-Cox model has been proposed and widely used in survival analysis. Based on the sparse regression algorithm, the...

Full description

Saved in:
Bibliographic Details
Published inIEEE Conference on Industrial Electronics and Applications (Online) pp. 924 - 927
Main Authors Lu, Wenxin, Yu, Zhuliang, Gu, Zhenghui, Huang, Jinhong, Gao, Wei, Zhou, Haiyu
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.05.2018
Subjects
Online AccessGet full text
ISSN2158-2297
DOI10.1109/ICIEA.2018.8397844

Cover

Abstract Selection of prognostic genes associated with tumor has been a subject of considerable research in recent years. In order to solve the high-dimensional gene expression profiles, the Lasso-Cox model has been proposed and widely used in survival analysis. Based on the sparse regression algorithm, the regularization parameter must be carefully tuned by cross-validation to optimize performance. In this paper, we introduce an algorithm based on simple Bayesian approach to replace the process of parameter selection, and the regularization parameter is determined adaptively in training. Simulation results show that variable selection of Bayesian-Lasso (BLasso) can be more accurate than that of Lasso method. We also apply our algorithm to a real dataset DLBCL, and the selected genes have been proven to have close relationship with the tumor.
AbstractList Selection of prognostic genes associated with tumor has been a subject of considerable research in recent years. In order to solve the high-dimensional gene expression profiles, the Lasso-Cox model has been proposed and widely used in survival analysis. Based on the sparse regression algorithm, the regularization parameter must be carefully tuned by cross-validation to optimize performance. In this paper, we introduce an algorithm based on simple Bayesian approach to replace the process of parameter selection, and the regularization parameter is determined adaptively in training. Simulation results show that variable selection of Bayesian-Lasso (BLasso) can be more accurate than that of Lasso method. We also apply our algorithm to a real dataset DLBCL, and the selected genes have been proven to have close relationship with the tumor.
Author Zhou, Haiyu
Lu, Wenxin
Huang, Jinhong
Yu, Zhuliang
Gao, Wei
Gu, Zhenghui
Author_xml – sequence: 1
  givenname: Wenxin
  surname: Lu
  fullname: Lu, Wenxin
  organization: College of Automation Science and Engineering, South China University of Technology, Guangzhou, 510641, China
– sequence: 2
  givenname: Zhuliang
  surname: Yu
  fullname: Yu, Zhuliang
  organization: College of Automation Science and Engineering, South China University of Technology, Guangzhou, 510641, China
– sequence: 3
  givenname: Zhenghui
  surname: Gu
  fullname: Gu, Zhenghui
  organization: College of Automation Science and Engineering, South China University of Technology, Guangzhou, 510641, China
– sequence: 4
  givenname: Jinhong
  surname: Huang
  fullname: Huang, Jinhong
  organization: College of Automation Science and Engineering, South China University of Technology, Guangzhou, 510641, China
– sequence: 5
  givenname: Wei
  surname: Gao
  fullname: Gao, Wei
  organization: College of Automation Science and Engineering, South China University of Technology, Guangzhou, 510641, China
– sequence: 6
  givenname: Haiyu
  surname: Zhou
  fullname: Zhou, Haiyu
  organization: Department of Thoracic Surgery, Guangdong General Hospital & Guangdong Academy of Medical Sciences, Southern Medical University, South China University of Technology, Guangzhou, 510080, China
BookMark eNotj0FOwzAQAA0CiVL6Abj4AyleO8brY4kKRKrEBbhWm3jTGqUJilNBeT0geprTjDSX4qzrOxbiGtQcQPnbsiiXi7lWgHM03mGen4hLsAbvjLOIp2KiwWKmtXcXYpbSu1LKgHNoYCLKNxoiVS3LxC3XY-w7uU-x28hxy3JFKfVZ0X_JXR-4lZ9x3Mp7OnCK1MmBN_v2V_-mP-1KnDfUJp4dORWvD8uX4ilbPT-WxWKVRXB2zKpa516D1tZAHWyNTHlgoIAWGmzAhAB15Sv0VltrmAw1zgUVyIFpfDBTcfPfjcy8_hjijobD-nhufgBqP0-q
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICIEA.2018.8397844
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 1538637588
9781538637586
EISSN 2158-2297
EndPage 927
ExternalDocumentID 8397844
Genre orig-research
GroupedDBID 6IE
6IF
6IL
6IN
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
OCL
RIE
RIL
ID FETCH-LOGICAL-i175t-bc2492122531cd5c8ea4de1ad851f8f13dd1cb9b8952553ea3af77d0da713f9d3
IEDL.DBID RIE
IngestDate Wed Aug 27 02:49:07 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-bc2492122531cd5c8ea4de1ad851f8f13dd1cb9b8952553ea3af77d0da713f9d3
PageCount 4
ParticipantIDs ieee_primary_8397844
PublicationCentury 2000
PublicationDate 2018-May
PublicationDateYYYYMMDD 2018-05-01
PublicationDate_xml – month: 05
  year: 2018
  text: 2018-May
PublicationDecade 2010
PublicationTitle IEEE Conference on Industrial Electronics and Applications (Online)
PublicationTitleAbbrev ICIEA
PublicationYear 2018
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0003177831
Score 1.6729099
Snippet Selection of prognostic genes associated with tumor has been a subject of considerable research in recent years. In order to solve the high-dimensional gene...
SourceID ieee
SourceType Publisher
StartPage 924
SubjectTerms Adaptation models
Analytical models
Bayes methods
Bayesian regularization
Hazards
Input variables
Lasso-Cox regression
Numerical models
Prognostic gene
Survival analysis
Tumors
Title Variable selection using the Lasso-Cox model with Bayesian regularization
URI https://ieeexplore.ieee.org/document/8397844
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JS8NAFH60PenFpRV35uDRpBlmkkmOWlpaseLBSm9ltogITakpqL_eN5O0LnjwFgIhYd4Mb8m3AFwwEQmpLQ1MxvKAO71PKbkKuBXUJDKhiXIE5_FdMpzwm2k8bcDlhgtjrfXgMxu6S_8v3xR65UZlXUzmIuW8CU3cZhVXazNPwTwoUkbXvJgo6456o_6VA2-lYf3gDwcVn0AGOzBev7rCjbyEq1KF-uOXKuN_v20XOl9UPXK_SUJ70LDzfdj-pjLYhtEj9sOOIUVevekNRoI4uPsTweKP3GL1XAS94o14UxziBrPkWr5bx64kS29Vv6zJmh2YDPoPvWFQOygEz1gWlIHSThCQ4pllVJtYp1ZyY6k0WGflaU6ZMVSrTKVZjK0Fs5LJXAgTGYm9a54ZdgCteTG3h0AyqmMmlZTaYCzxnFOVCW90JNI8svwI2m5RZotKJGNWr8fx37dPYMsFpkIOnkKrXK7sGWb3Up37sH4Cj76mPg
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEB5qPagXH634dg8eTZplN9nkqKWl0bZ4aKW3sq9IERqpKai_3t1NWh948BYWQsIOyzcz-33zAVwRFjAuNfZUQjKP2nmfnFPhUc2winiEI2EFzoNh1BvTu0k4qcH1WgujtXbkM-3bR3eXr3K5tK2ylgFzFlO6AZsG92lYqrXWHRWDhCwmeKWMCZJW2k47N5a-FfvVqz88VByEdHdhsPp4yRx59peF8OXHr7mM__27PWh-ifXQwxqG9qGm5wew823OYAPSR1MRW40UenW2NyYWyBLen5BJ_1Df5M-5187fkLPFQbY1i275u7b6SrRwZvWLSq7ZhHG3M2r3vMpDwZuZxKDwhLQjAbE5tQRLFcpYc6o05spkWlmcYaIUliIRcRKa4oJoTnjGmAoUN9VrlihyCPV5PtdHgBIsQ8IF51KZaJqTjkXCnNURi7NA02No2E2ZvpRjMqbVfpz8vXwJW73RoD_tp8P7U9i2QSp5hGdQLxZLfW6wvhAXLsSfc1Wpiw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=IEEE+Conference+on+Industrial+Electronics+and+Applications+%28Online%29&rft.atitle=Variable+selection+using+the+Lasso-Cox+model+with+Bayesian+regularization&rft.au=Lu%2C+Wenxin&rft.au=Yu%2C+Zhuliang&rft.au=Gu%2C+Zhenghui&rft.au=Huang%2C+Jinhong&rft.date=2018-05-01&rft.pub=IEEE&rft.eissn=2158-2297&rft.spage=924&rft.epage=927&rft_id=info:doi/10.1109%2FICIEA.2018.8397844&rft.externalDocID=8397844