Supervised domain adaptation for I-vector based speaker recognition

In this paper, we present a comprehensive study on supervised domain adaptation of PLDA based i-vector speaker recognition systems. After describing the system parameters subject to adaptation, we study the impact of their adaptation on recognition performance. Using the recently designed domain ada...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the ... IEEE International Conference on Acoustics, Speech and Signal Processing (1998) pp. 4047 - 4051
Main Authors Garcia-Romero, Daniel, McCree, Alan
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.05.2014
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this paper, we present a comprehensive study on supervised domain adaptation of PLDA based i-vector speaker recognition systems. After describing the system parameters subject to adaptation, we study the impact of their adaptation on recognition performance. Using the recently designed domain adaptation challenge, we observe that the adaptation of the PLDA parameters (i.e. across-class and within-class co variances) produces the largest gains. Nonetheless, length-normalization is also important; whereas using an indomani UBM and T matrix is not crucial. For the PLDA adaptation, we compare four approaches. Three of them are proposed in this work, and a fourth one was previously published. Overall, the four techniques are successful at leveraging varying amounts of labeled in-domain data and their performance is quite similar. However, our approaches are less involved, and two of them are applicable to a larger class of models (low-rank across-class).
AbstractList In this paper, we present a comprehensive study on supervised domain adaptation of PLDA based i-vector speaker recognition systems. After describing the system parameters subject to adaptation, we study the impact of their adaptation on recognition performance. Using the recently designed domain adaptation challenge, we observe that the adaptation of the PLDA parameters (i.e. across-class and within-class co variances) produces the largest gains. Nonetheless, length-normalization is also important; whereas using an indomani UBM and T matrix is not crucial. For the PLDA adaptation, we compare four approaches. Three of them are proposed in this work, and a fourth one was previously published. Overall, the four techniques are successful at leveraging varying amounts of labeled in-domain data and their performance is quite similar. However, our approaches are less involved, and two of them are applicable to a larger class of models (low-rank across-class).
Author McCree, Alan
Garcia-Romero, Daniel
Author_xml – sequence: 1
  givenname: Daniel
  surname: Garcia-Romero
  fullname: Garcia-Romero, Daniel
  email: dgromero@jhu.edu
  organization: Human Language Technol. Center of Excellence, Johns Hopkins Univ., Baltimore, MD, USA
– sequence: 2
  givenname: Alan
  surname: McCree
  fullname: McCree, Alan
  email: alan.mccree@jhu.edu
  organization: Human Language Technol. Center of Excellence, Johns Hopkins Univ., Baltimore, MD, USA
BookMark eNotj81Kw0AUhUeoYFv7BN3kBRLv_CUzSyn-FAoK0XW5M3NHRm0SJrHg29tiV-csPj7OWbBZ13fE2JpDxTnYu-3mvm1fKwFcVbXRStbiiq1sY7hqrBXGSjVjc64FlDVX9oYtxvETAEyjzJxt2p-B8jGNFIrQHzB1BQYcJpxS3xWxz8W2PJKfTsXhGRoHwi_KRSbff3TpjN2y64jfI60uuWTvjw9vm-dy9_J0WrcrE2_0VDpnfZDoYkDNQXHrbYheatvoWAOSQ4OClJDRa4BaixARwVMdhMPgjFyy9b83EdF-yOmA-Xd_-Sz_ACV7TwE
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/ICASSP.2014.6854362
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Xplore
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 9781479928934
1479928933
EndPage 4051
ExternalDocumentID 6854362
Genre orig-research
GroupedDBID 23M
29P
6IE
6IF
6IH
6IK
6IL
6IM
6IN
AAJGR
AAWTH
ABLEC
ACGFS
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IJVOP
IPLJI
M43
OCL
RIE
RIL
RIO
RNS
ID FETCH-LOGICAL-i175t-bb9cd3abfda510419c9dfc35975f60aeba8a2e423fc500652dfaa0ce6d2badb83
IEDL.DBID RIE
ISSN 1520-6149
IngestDate Wed Aug 27 04:57:19 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-bb9cd3abfda510419c9dfc35975f60aeba8a2e423fc500652dfaa0ce6d2badb83
PageCount 5
ParticipantIDs ieee_primary_6854362
PublicationCentury 2000
PublicationDate 2014-May
PublicationDateYYYYMMDD 2014-05-01
PublicationDate_xml – month: 05
  year: 2014
  text: 2014-May
PublicationDecade 2010
PublicationTitle Proceedings of the ... IEEE International Conference on Acoustics, Speech and Signal Processing (1998)
PublicationTitleAbbrev ICASSP
PublicationYear 2014
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0008748
Score 2.2942266
Snippet In this paper, we present a comprehensive study on supervised domain adaptation of PLDA based i-vector speaker recognition systems. After describing the system...
SourceID ieee
SourceType Publisher
StartPage 4047
SubjectTerms Adaptation models
Approximation methods
Bayes methods
Computational modeling
i-vectors
PLDA
Speaker recognition
Speech
supervised domain adaptation
Training
Title Supervised domain adaptation for I-vector based speaker recognition
URI https://ieeexplore.ieee.org/document/6854362
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1La8MwDDbdTttlj3bsjQ87LmkezsPHUVbaQUehK_RWbEuGUpaEttlhv352kmUPdtjNGGOMjPVJ1ieJkDvBEjR-g3IUqNBh9kkJLhNHcj_QEIqoDhdMnuPRnD0tokWH3Le5MIhYkc_QtcMqlg-5Ku1XWT9OI1Yp3D3juNW5Wq3WTZOqU5aBI-sOMd5UGPI93h8PHmazqaVxMbfZ4kcvlQpKhkdk8nmImkGydsuddNX7r_qM_z3lMel9Je3RaQtHJ6SD2Sk5_FZvsEsGs7KwumGLQCF_FauMChBFHY2nxnylY-et-sanFt2AbgsUa9zQlmaUZz0yHz6-DEZO00XBWRnTYOdIyZURutQgzPtjPlcctAqNIxHp2BMoRSoCNFaVVpE1SALQQngKYwikAJmGZ2Q_yzM8JxQTDTLhOoA0ZaFn1gXgS620J_1YAr8gXSuOZVEXylg2krj8e_qKHNgrqdmD12R_tynxxiD8Tt5WV_sB7_mnaw
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LawIxEA5iD20vfWjpuzn02F33kX3kWKSirYqggjdJMgmIdHdRt4f--ia72-2DHnoLIYQwIfPNZL6ZQeiekUhqv0FYAoRvEfOkGOWRxanrKfBZUIYLRuOwPyfPi2DRQA91LoyUsiCfSdsMi1g-pCI3X2WdMA5IoXD3NO4HbpmtVevdOCp6ZWlAMg4RoVWNIdehnUH3cTqdGCIXsatNfnRTKcCkd4RGn8coOSRrO99xW7z_qtD433Meo_ZX2h6e1IB0ghoyOUWH3yoOtlB3mmdGO2wlYEhf2SrBDFhWxuOxNmDxwHorPvKxwTfA20yytdzgmmiUJm007z3Nun2r6qNgrbRxsLM4p0KLnStg-gUSlwoKSvjalQhU6DDJWcw8qe0qJQJjknigGHOEDMHjDHjsn6FmkibyHGEZKeARVR7EMfEdvc4DlyuhHO6GHOgFahlxLLOyVMayksTl39N3aL8_Gw2Xw8H45QodmOspuYTXqLnb5PJG4_2O3xbX_AHbN6q0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+of+the+...+IEEE+International+Conference+on+Acoustics%2C+Speech+and+Signal+Processing+%281998%29&rft.atitle=Supervised+domain+adaptation+for+I-vector+based+speaker+recognition&rft.au=Garcia-Romero%2C+Daniel&rft.au=McCree%2C+Alan&rft.date=2014-05-01&rft.pub=IEEE&rft.issn=1520-6149&rft.spage=4047&rft.epage=4051&rft_id=info:doi/10.1109%2FICASSP.2014.6854362&rft.externalDocID=6854362
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1520-6149&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1520-6149&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1520-6149&client=summon