Sticker: A 0.41-62.1 TOPS/W 8Bit Neural Network Processor with Multi-Sparsity Compatible Convolution Arrays and Online Tuning Acceleration for Fully Connected Layers
Neural Networks (NNs) have emerged as a fundamental technology for machine learning. The sparsity of weight and activation in NNs varies widely from 5%-90% and can potentially lower computation requirements. However, existing designs lack a universal solution to efficiently handle different sparsity...
Saved in:
Published in | 2018 IEEE Symposium on VLSI Circuits pp. 33 - 34 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.06.2018
|
Subjects | |
Online Access | Get full text |
DOI | 10.1109/VLSIC.2018.8502404 |
Cover
Abstract | Neural Networks (NNs) have emerged as a fundamental technology for machine learning. The sparsity of weight and activation in NNs varies widely from 5%-90% and can potentially lower computation requirements. However, existing designs lack a universal solution to efficiently handle different sparsity in various layers and neural networks. This work, named STICKER, first systematically explores NN sparsity for inference and online tuning operations. Its major contributions are: 1) autonomous NN sparsity detector that switches the processor modes; 2) Multi-sparsity compatible Convolution (CONV) PE arrays that contain a multi-mode memory supporting different sparsity, and the set-associative PEs supporting both dense and sparse operations and reducing 92% memory area compared with previous hash memory banks; 3) Online tuning PE for sparse FCs that achieves 32.5x speedup compared with conventional CPU, using quantization center-based weight updating and Compressed Sparse Column (CSC) based back propagations. Peak energy efficiency of the 65nm STICKER chip is up to 62.1 TOPS/W at 8bit data length. |
---|---|
AbstractList | Neural Networks (NNs) have emerged as a fundamental technology for machine learning. The sparsity of weight and activation in NNs varies widely from 5%-90% and can potentially lower computation requirements. However, existing designs lack a universal solution to efficiently handle different sparsity in various layers and neural networks. This work, named STICKER, first systematically explores NN sparsity for inference and online tuning operations. Its major contributions are: 1) autonomous NN sparsity detector that switches the processor modes; 2) Multi-sparsity compatible Convolution (CONV) PE arrays that contain a multi-mode memory supporting different sparsity, and the set-associative PEs supporting both dense and sparse operations and reducing 92% memory area compared with previous hash memory banks; 3) Online tuning PE for sparse FCs that achieves 32.5x speedup compared with conventional CPU, using quantization center-based weight updating and Compressed Sparse Column (CSC) based back propagations. Peak energy efficiency of the 65nm STICKER chip is up to 62.1 TOPS/W at 8bit data length. |
Author | Xueqing Li Yixiong Yang Huazhong Yang Huanrui Yang Meng-Fan Chang Zhibo Wang Qingwei Guo Zhe Yuan Jinshan Yue Jinyang Li Yongpan Liu |
Author_xml | – sequence: 1 surname: Zhe Yuan fullname: Zhe Yuan organization: Tsinghua Univ., Beijing, China – sequence: 2 surname: Jinshan Yue fullname: Jinshan Yue organization: Tsinghua Univ., Beijing, China – sequence: 3 surname: Huanrui Yang fullname: Huanrui Yang organization: Tsinghua Univ., Beijing, China – sequence: 4 surname: Zhibo Wang fullname: Zhibo Wang organization: Tsinghua Univ., Beijing, China – sequence: 5 surname: Jinyang Li fullname: Jinyang Li organization: Tsinghua Univ., Beijing, China – sequence: 6 surname: Yixiong Yang fullname: Yixiong Yang organization: Tsinghua Univ., Beijing, China – sequence: 7 surname: Qingwei Guo fullname: Qingwei Guo organization: Tsinghua Univ., Beijing, China – sequence: 8 surname: Xueqing Li fullname: Xueqing Li organization: Tsinghua Univ., Beijing, China – sequence: 9 surname: Meng-Fan Chang fullname: Meng-Fan Chang organization: Nat. Tsing Hua Univ., Hsinchu, Taiwan – sequence: 10 surname: Huazhong Yang fullname: Huazhong Yang organization: Tsinghua Univ., Beijing, China – sequence: 11 surname: Yongpan Liu fullname: Yongpan Liu organization: Tsinghua Univ., Beijing, China |
BookMark | eNotkNFOgzAYRmuiiTr3AnrTF4C10BbwDhenS9AtYerlUsqP1nVlKcWFB_I9nbqrcy6-nIvvEp3a1gJC15SElJJs8lqU82kYEZqGKScRI-wEjbMkpTxOBYsoE-do3HWfhJBIpJxH_AJ9l16rDbhbnGMSMhqIKKR4tViWkzec3mmPn6F30hzg963b4KVrFXRd6_Be-w_81Buvg3InXaf9gKftdie9rgwc1H61pve6tTh3Tg4dlrbGC2u0BbzqrbbvOFcKDDj5t2oO0VlvzG_GWlAealzIAVx3hc4aaToYHzlCL7P71fQxKBYP82leBJom3AdVlcUZREo1UNcNJURlsWCZIooLSRMBwGgm6jpVVVoJquJEJlkFwImsK6aieIRu_rsaANY7p7fSDevjmfEP3WJuGA |
ContentType | Conference Proceeding |
DBID | 6IE 6IH CBEJK RIE RIO |
DOI | 10.1109/VLSIC.2018.8502404 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISBN | 9781538642146 153864214X |
EndPage | 34 |
ExternalDocumentID | 8502404 |
Genre | orig-research |
GroupedDBID | 6IE 6IF 6IG 6IH 6IL 6IN AAJGR AAWTH ABLEC ABQGA ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK IEGSK IJVOP OCL RIE RIL RIO |
ID | FETCH-LOGICAL-i175t-bb939e2ccfeddf100c93649c0c56a176ee4196dd8cb8b61c37a79bee50adb4c23 |
IEDL.DBID | RIE |
IngestDate | Wed Aug 27 02:54:15 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i175t-bb939e2ccfeddf100c93649c0c56a176ee4196dd8cb8b61c37a79bee50adb4c23 |
PageCount | 2 |
ParticipantIDs | ieee_primary_8502404 |
PublicationCentury | 2000 |
PublicationDate | 2018-June |
PublicationDateYYYYMMDD | 2018-06-01 |
PublicationDate_xml | – month: 06 year: 2018 text: 2018-June |
PublicationDecade | 2010 |
PublicationTitle | 2018 IEEE Symposium on VLSI Circuits |
PublicationTitleAbbrev | VLSIC |
PublicationYear | 2018 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0002685525 |
Score | 2.0492175 |
Snippet | Neural Networks (NNs) have emerged as a fundamental technology for machine learning. The sparsity of weight and activation in NNs varies widely from 5%-90% and... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 33 |
SubjectTerms | Clocks Energy efficiency Indexes Memory management Micromechanical devices Quantization (signal) Tuning |
Title | Sticker: A 0.41-62.1 TOPS/W 8Bit Neural Network Processor with Multi-Sparsity Compatible Convolution Arrays and Online Tuning Acceleration for Fully Connected Layers |
URI | https://ieeexplore.ieee.org/document/8502404 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwFA5zTz6pTPHOefDRdr0kaePbHI4pmw42dW8jt8JwdKO2gv4f_6dJ200UH3xqKKQJpyc5l3zfCUIXKqCCCh46xERAJkDBvsOJhVhJs7oCjnWELd95eE_7j_huSqYNdLnhwmitS_CZdm2zPMtXS1nYVFk7JrYiF95CW0bNKq7WJp8S0JiQgKx5MR5rPw3Gt10L3orduuOPG1RKA9LbQcP10BVu5MUtcuHKj19VGf87t120_03Vg9HGCO2hhk5b6HNs1OFFZ1fQAc81gqGB68PkYTRuP0N8Pc_B1uTgC_MoQeBQ0wWWGdi8LJSsXGe84iViA8o9I5-LhTbN9K1WVuhkGX9_BZ4qqAqWwqSwWRboSGmMWaVaYJxisHGu_YzZ06XxcGHAraO_jx57N5Nu36nvY3DmxsnIHSFYyHQgZaKVSnzPkyykmElPEsr9iGqNzXpWKpYiFtSXYcQjJrQmHlcCyyA8QM10mepDBInHI0yYUEEiccwSJkLFJOPY9CGer45Qy4p4tqpKbsxq6R7__foEbdvfXCG4TlEzzwp9ZnyFXJyXSvIFXlbAkQ |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwELVKOcAJUIvYmQNHkmaxnZhbQaACbUFqgd4qb5EqUFqFFAn-h__ETtIiEAdOsSI5tiZjz-L3xgidqIAKKnjoEBMBmQAF-w4nFmIlzeoKONYRtnznXp92HvDNiIxq6HTJhdFaF-Az7dpmcZavpnJuU2WtmNiKXHgFrRq7j0nJ1lpmVAIaExKQBTPGY63H7uD6wsK3Yrfq-uMOlcKEXG2g3mLwEjny7M5z4cqPX3UZ_zu7TdT8JuvB_dIMbaGaThvoc2AU4llnZ9AGzzWioYHrw_DuftB6gvh8koOtysFfzKOAgUNFGJhmYDOzUPByncGMF5gNKHaNfCJetGmmb5W6QjvL-Psr8FRBWbIUhnObZ4G2lMaclcoFxi0GG-naz5hdXRofF7rcuvpN9HB1ObzoONWNDM7EuBm5IwQLmQ6kTLRSie95koUUM-lJQrkfUa2xWdFKxVLEgvoyjHjEhNbE40pgGYTbqJ5OU72DIPF4hAkTKkgkjlnCRKiYZBybPsTz1S5qWBGPZ2XRjXEl3b2_Xx-jtc6w1x13r_u3-2jd_vISz3WA6nk214fGc8jFUaEwX5oow94 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2018+IEEE+Symposium+on+VLSI+Circuits&rft.atitle=Sticker%3A+A+0.41-62.1+TOPS%2FW+8Bit+Neural+Network+Processor+with+Multi-Sparsity+Compatible+Convolution+Arrays+and+Online+Tuning+Acceleration+for+Fully+Connected+Layers&rft.au=Zhe+Yuan&rft.au=Jinshan+Yue&rft.au=Huanrui+Yang&rft.au=Zhibo+Wang&rft.date=2018-06-01&rft.pub=IEEE&rft.spage=33&rft.epage=34&rft_id=info:doi/10.1109%2FVLSIC.2018.8502404&rft.externalDocID=8502404 |