Sticker: A 0.41-62.1 TOPS/W 8Bit Neural Network Processor with Multi-Sparsity Compatible Convolution Arrays and Online Tuning Acceleration for Fully Connected Layers

Neural Networks (NNs) have emerged as a fundamental technology for machine learning. The sparsity of weight and activation in NNs varies widely from 5%-90% and can potentially lower computation requirements. However, existing designs lack a universal solution to efficiently handle different sparsity...

Full description

Saved in:
Bibliographic Details
Published in2018 IEEE Symposium on VLSI Circuits pp. 33 - 34
Main Authors Zhe Yuan, Jinshan Yue, Huanrui Yang, Zhibo Wang, Jinyang Li, Yixiong Yang, Qingwei Guo, Xueqing Li, Meng-Fan Chang, Huazhong Yang, Yongpan Liu
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.06.2018
Subjects
Online AccessGet full text
DOI10.1109/VLSIC.2018.8502404

Cover

Abstract Neural Networks (NNs) have emerged as a fundamental technology for machine learning. The sparsity of weight and activation in NNs varies widely from 5%-90% and can potentially lower computation requirements. However, existing designs lack a universal solution to efficiently handle different sparsity in various layers and neural networks. This work, named STICKER, first systematically explores NN sparsity for inference and online tuning operations. Its major contributions are: 1) autonomous NN sparsity detector that switches the processor modes; 2) Multi-sparsity compatible Convolution (CONV) PE arrays that contain a multi-mode memory supporting different sparsity, and the set-associative PEs supporting both dense and sparse operations and reducing 92% memory area compared with previous hash memory banks; 3) Online tuning PE for sparse FCs that achieves 32.5x speedup compared with conventional CPU, using quantization center-based weight updating and Compressed Sparse Column (CSC) based back propagations. Peak energy efficiency of the 65nm STICKER chip is up to 62.1 TOPS/W at 8bit data length.
AbstractList Neural Networks (NNs) have emerged as a fundamental technology for machine learning. The sparsity of weight and activation in NNs varies widely from 5%-90% and can potentially lower computation requirements. However, existing designs lack a universal solution to efficiently handle different sparsity in various layers and neural networks. This work, named STICKER, first systematically explores NN sparsity for inference and online tuning operations. Its major contributions are: 1) autonomous NN sparsity detector that switches the processor modes; 2) Multi-sparsity compatible Convolution (CONV) PE arrays that contain a multi-mode memory supporting different sparsity, and the set-associative PEs supporting both dense and sparse operations and reducing 92% memory area compared with previous hash memory banks; 3) Online tuning PE for sparse FCs that achieves 32.5x speedup compared with conventional CPU, using quantization center-based weight updating and Compressed Sparse Column (CSC) based back propagations. Peak energy efficiency of the 65nm STICKER chip is up to 62.1 TOPS/W at 8bit data length.
Author Xueqing Li
Yixiong Yang
Huazhong Yang
Huanrui Yang
Meng-Fan Chang
Zhibo Wang
Qingwei Guo
Zhe Yuan
Jinshan Yue
Jinyang Li
Yongpan Liu
Author_xml – sequence: 1
  surname: Zhe Yuan
  fullname: Zhe Yuan
  organization: Tsinghua Univ., Beijing, China
– sequence: 2
  surname: Jinshan Yue
  fullname: Jinshan Yue
  organization: Tsinghua Univ., Beijing, China
– sequence: 3
  surname: Huanrui Yang
  fullname: Huanrui Yang
  organization: Tsinghua Univ., Beijing, China
– sequence: 4
  surname: Zhibo Wang
  fullname: Zhibo Wang
  organization: Tsinghua Univ., Beijing, China
– sequence: 5
  surname: Jinyang Li
  fullname: Jinyang Li
  organization: Tsinghua Univ., Beijing, China
– sequence: 6
  surname: Yixiong Yang
  fullname: Yixiong Yang
  organization: Tsinghua Univ., Beijing, China
– sequence: 7
  surname: Qingwei Guo
  fullname: Qingwei Guo
  organization: Tsinghua Univ., Beijing, China
– sequence: 8
  surname: Xueqing Li
  fullname: Xueqing Li
  organization: Tsinghua Univ., Beijing, China
– sequence: 9
  surname: Meng-Fan Chang
  fullname: Meng-Fan Chang
  organization: Nat. Tsing Hua Univ., Hsinchu, Taiwan
– sequence: 10
  surname: Huazhong Yang
  fullname: Huazhong Yang
  organization: Tsinghua Univ., Beijing, China
– sequence: 11
  surname: Yongpan Liu
  fullname: Yongpan Liu
  organization: Tsinghua Univ., Beijing, China
BookMark eNotkNFOgzAYRmuiiTr3AnrTF4C10BbwDhenS9AtYerlUsqP1nVlKcWFB_I9nbqrcy6-nIvvEp3a1gJC15SElJJs8lqU82kYEZqGKScRI-wEjbMkpTxOBYsoE-do3HWfhJBIpJxH_AJ9l16rDbhbnGMSMhqIKKR4tViWkzec3mmPn6F30hzg963b4KVrFXRd6_Be-w_81Buvg3InXaf9gKftdie9rgwc1H61pve6tTh3Tg4dlrbGC2u0BbzqrbbvOFcKDDj5t2oO0VlvzG_GWlAealzIAVx3hc4aaToYHzlCL7P71fQxKBYP82leBJom3AdVlcUZREo1UNcNJURlsWCZIooLSRMBwGgm6jpVVVoJquJEJlkFwImsK6aieIRu_rsaANY7p7fSDevjmfEP3WJuGA
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/VLSIC.2018.8502404
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781538642146
153864214X
EndPage 34
ExternalDocumentID 8502404
Genre orig-research
GroupedDBID 6IE
6IF
6IG
6IH
6IL
6IN
AAJGR
AAWTH
ABLEC
ABQGA
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
IEGSK
IJVOP
OCL
RIE
RIL
RIO
ID FETCH-LOGICAL-i175t-bb939e2ccfeddf100c93649c0c56a176ee4196dd8cb8b61c37a79bee50adb4c23
IEDL.DBID RIE
IngestDate Wed Aug 27 02:54:15 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-bb939e2ccfeddf100c93649c0c56a176ee4196dd8cb8b61c37a79bee50adb4c23
PageCount 2
ParticipantIDs ieee_primary_8502404
PublicationCentury 2000
PublicationDate 2018-June
PublicationDateYYYYMMDD 2018-06-01
PublicationDate_xml – month: 06
  year: 2018
  text: 2018-June
PublicationDecade 2010
PublicationTitle 2018 IEEE Symposium on VLSI Circuits
PublicationTitleAbbrev VLSIC
PublicationYear 2018
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0002685525
Score 2.0492175
Snippet Neural Networks (NNs) have emerged as a fundamental technology for machine learning. The sparsity of weight and activation in NNs varies widely from 5%-90% and...
SourceID ieee
SourceType Publisher
StartPage 33
SubjectTerms Clocks
Energy efficiency
Indexes
Memory management
Micromechanical devices
Quantization (signal)
Tuning
Title Sticker: A 0.41-62.1 TOPS/W 8Bit Neural Network Processor with Multi-Sparsity Compatible Convolution Arrays and Online Tuning Acceleration for Fully Connected Layers
URI https://ieeexplore.ieee.org/document/8502404
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwFA5zTz6pTPHOefDRdr0kaePbHI4pmw42dW8jt8JwdKO2gv4f_6dJ200UH3xqKKQJpyc5l3zfCUIXKqCCCh46xERAJkDBvsOJhVhJs7oCjnWELd95eE_7j_huSqYNdLnhwmitS_CZdm2zPMtXS1nYVFk7JrYiF95CW0bNKq7WJp8S0JiQgKx5MR5rPw3Gt10L3orduuOPG1RKA9LbQcP10BVu5MUtcuHKj19VGf87t120_03Vg9HGCO2hhk5b6HNs1OFFZ1fQAc81gqGB68PkYTRuP0N8Pc_B1uTgC_MoQeBQ0wWWGdi8LJSsXGe84iViA8o9I5-LhTbN9K1WVuhkGX9_BZ4qqAqWwqSwWRboSGmMWaVaYJxisHGu_YzZ06XxcGHAraO_jx57N5Nu36nvY3DmxsnIHSFYyHQgZaKVSnzPkyykmElPEsr9iGqNzXpWKpYiFtSXYcQjJrQmHlcCyyA8QM10mepDBInHI0yYUEEiccwSJkLFJOPY9CGer45Qy4p4tqpKbsxq6R7__foEbdvfXCG4TlEzzwp9ZnyFXJyXSvIFXlbAkQ
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwELVKOcAJUIvYmQNHkmaxnZhbQaACbUFqgd4qb5EqUFqFFAn-h__ETtIiEAdOsSI5tiZjz-L3xgidqIAKKnjoEBMBmQAF-w4nFmIlzeoKONYRtnznXp92HvDNiIxq6HTJhdFaF-Az7dpmcZavpnJuU2WtmNiKXHgFrRq7j0nJ1lpmVAIaExKQBTPGY63H7uD6wsK3Yrfq-uMOlcKEXG2g3mLwEjny7M5z4cqPX3UZ_zu7TdT8JuvB_dIMbaGaThvoc2AU4llnZ9AGzzWioYHrw_DuftB6gvh8koOtysFfzKOAgUNFGJhmYDOzUPByncGMF5gNKHaNfCJetGmmb5W6QjvL-Psr8FRBWbIUhnObZ4G2lMaclcoFxi0GG-naz5hdXRofF7rcuvpN9HB1ObzoONWNDM7EuBm5IwQLmQ6kTLRSie95koUUM-lJQrkfUa2xWdFKxVLEgvoyjHjEhNbE40pgGYTbqJ5OU72DIPF4hAkTKkgkjlnCRKiYZBybPsTz1S5qWBGPZ2XRjXEl3b2_Xx-jtc6w1x13r_u3-2jd_vISz3WA6nk214fGc8jFUaEwX5oow94
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2018+IEEE+Symposium+on+VLSI+Circuits&rft.atitle=Sticker%3A+A+0.41-62.1+TOPS%2FW+8Bit+Neural+Network+Processor+with+Multi-Sparsity+Compatible+Convolution+Arrays+and+Online+Tuning+Acceleration+for+Fully+Connected+Layers&rft.au=Zhe+Yuan&rft.au=Jinshan+Yue&rft.au=Huanrui+Yang&rft.au=Zhibo+Wang&rft.date=2018-06-01&rft.pub=IEEE&rft.spage=33&rft.epage=34&rft_id=info:doi/10.1109%2FVLSIC.2018.8502404&rft.externalDocID=8502404