Part-based statistical models for object classification and detection
We propose using simple mixture models to define a set of mid-level binary local features based on binary oriented edge input. The features capture natural local structures in the data and yield very high classification rates when used with a variety of classifiers trained on small training sets, ex...
Saved in:
Published in | 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05) Vol. 2; pp. 734 - 740 vol. 2 |
---|---|
Main Authors | , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
2005
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We propose using simple mixture models to define a set of mid-level binary local features based on binary oriented edge input. The features capture natural local structures in the data and yield very high classification rates when used with a variety of classifiers trained on small training sets, exhibiting robustness to degradation with clutter. Of particular interest is the use of the features as variables in simple statistical models for the objects thus enabling likelihood based classification. Pre-training decision boundaries between classes, a necessary component of non-parametric techniques, are thus avoided. Class models are trained separately with no need to access data of other classes. Experimental results are presented for handwritten character recognition, classification of deformed BTEX symbols involving hundreds of classes, and side view car detection. |
---|---|
AbstractList | We propose using simple mixture models to define a set of mid-level binary local features based on binary oriented edge input. The features capture natural local structures in the data and yield very high classification rates when used with a variety of classifiers trained on small training sets, exhibiting robustness to degradation with clutter. Of particular interest is the use of the features as variables in simple statistical models for the objects thus enabling likelihood based classification. Pre-training decision boundaries between classes, a necessary component of non-parametric techniques, are thus avoided. Class models are trained separately with no need to access data of other classes. Experimental results are presented for handwritten character recognition, classification of deformed BTEX symbols involving hundreds of classes, and side view car detection. |
Author | Amit, Y. Bernstein, E.J. |
Author_xml | – sequence: 1 givenname: E.J. surname: Bernstein fullname: Bernstein, E.J. organization: Dept. of Stat., Chicago Univ., USA – sequence: 2 givenname: Y. surname: Amit fullname: Amit, Y. organization: Dept. of Stat., Chicago Univ., USA |
BookMark | eNpNjk1LAzEYhINWsK09evKSP7BrvrPvUZZahYJF1GvJJm8gZbsrm1z8967owbkMwwMzsyKLYRyQkFvOas4Z3Lcfh9daMKZrYdkFWXJmZGWAwyVZMWtAC2mFWPwD12ST84nNkiAbJZZke3BTqTqXMdBcXEm5JO96eh4D9pnGcaJjd0JfqO9dzinOtKRxoG4INGCZyZxuyFV0fcbNn6_J--P2rX2q9i-75_ZhXyVu9c-MN4CxCaibTjtEZWMQ1is5v_WABpQVUVgwoTMRmsgtQwDeiahBoZdrcvfbmxDx-Dmls5u-jlwZq7mW3zOkTys |
ContentType | Conference Proceeding |
DBID | 6IE 6IH CBEJK RIE RIO |
DOI | 10.1109/CVPR.2005.270 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Statistics Computer Science |
EISSN | 1063-6919 |
EndPage | 740 vol. 2 |
ExternalDocumentID | 1467515 |
Genre | orig-research |
GroupedDBID | 23M 29F 29O 6IE 6IH 6IK ABDPE ACGFS ALMA_UNASSIGNED_HOLDINGS CBEJK IPLJI M43 RIE RIO RNS |
ID | FETCH-LOGICAL-i175t-bac69ef8de58b5aee47fd27c43769c9e69472f2796db6f98f170e991b2f594ec3 |
IEDL.DBID | RIE |
ISBN | 0769523722 9780769523729 |
ISSN | 1063-6919 |
IngestDate | Wed Aug 27 02:18:30 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i175t-bac69ef8de58b5aee47fd27c43769c9e69472f2796db6f98f170e991b2f594ec3 |
ParticipantIDs | ieee_primary_1467515 |
PublicationCentury | 2000 |
PublicationDate | 20050000 |
PublicationDateYYYYMMDD | 2005-01-01 |
PublicationDate_xml | – year: 2005 text: 20050000 |
PublicationDecade | 2000 |
PublicationTitle | 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05) |
PublicationTitleAbbrev | CVPR |
PublicationYear | 2005 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0000393842 ssj0023720 ssj0003211698 |
Score | 1.7121849 |
Snippet | We propose using simple mixture models to define a set of mid-level binary local features based on binary oriented edge input. The features capture natural... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 734 |
SubjectTerms | Character recognition Degradation Layout Machine vision Object detection Photometry Robustness Scalability Statistics Training data |
Title | Part-based statistical models for object classification and detection |
URI | https://ieeexplore.ieee.org/document/1467515 |
Volume | 2 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1La8MwDDZdTz11azv2xocdlzZxnjqXljHoKGMdvZXYlmFspGNNL_v1s5xHx9hh5JBYgZAYOdYn6ZMYu4VA-tKCLg8BlReZQHh5HlCUXeRGJKDDjPjOi8fkfhU9rON1h921XBhEdMlnOKZLF8vXW7UnV9mEVnVMjPIjC9wqrlbrTyGOaVbDPBqHFtkk0EYUBHVjcZHPJPQSCKCC8BDTDVFX4mnGcCjGOZm-LJ8q14ughsY_WrC4HWjeZ4vm3avEk7fxvpRj9fWrrON_P-6YjQ5cP75sd7ET1sFiwPq1ccrrpb-zoqb_QyMbsB5ZqlWh5yGbLa0SerQpar5r5Pk7d612dtzaxnwryenDFRnslKHklILnheYaS5cSVozYaj57nt57dY8G79UaHvRYlQCaTGOcyThHjFKjRaoi--MCBZhAlAojUkiI7weZCVIfrU0qhYkhQhWesm6xLfCMcfRD5evUQih72FOegrQIEcNAoPJDc86GNGubj6oMx6aesIu_xZes56qsOm_JFeuWn3u8tvZDKW-c4nwD4PS8GA |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT8IwFG-IHuSEAsZve_DoYOu2bj0TCCoQYsBwI2v7lhjNMDIu_vX2dR8Y48HssPUtWbam3fu9j997hNwJT7rSGF0OCFBOkHrMSRIPo-wsSRkX2o-R7zyd8fEyeFyFqwa5r7kwAGCTz6CHlzaWrzdqh66yPu7qEBnlh0bvh6xga9UeFWSZxqWhh2Pf2DZc1DEFhv1YbOyT-w4XniiMeBHiDVbW4qnGYl-Osz94mT8XzheGLY1_NGGxOmjUItPq7YvUk7feLpc99fWrsON_P--YdPdsPzqv9dgJaUDWJq0SntJy82-NqOoAUcnapIlYtSj13CHDuVmGDqpFTbeVPHmnttnOlhp0TDcS3T5UIWTHHCW7LGiSaaoht0lhWZcsR8PFYOyUXRqcVwM98LGKC0hjDWEswwQgiFLNIhWYX5dQArgIIpaySHBk_Ik49SIXDCqVLA1FAMo_JQfZJoMzQsH1lasjY0SZw5ySSEhjI4LvMVCun56TDs7a-qMoxLEuJ-zib_EtORovppP15GH2dEmatuaq9Z1ckYP8cwfXBk3k8sYuom_pr79i |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2005+IEEE+Computer+Society+Conference+on+Computer+Vision+and+Pattern+Recognition+%28CVPR%2705%29&rft.atitle=Part-based+statistical+models+for+object+classification+and+detection&rft.au=Bernstein%2C+E.J.&rft.au=Amit%2C+Y.&rft.date=2005-01-01&rft.pub=IEEE&rft.isbn=9780769523729&rft.issn=1063-6919&rft.eissn=1063-6919&rft.volume=2&rft.spage=734&rft.epage=740+vol.+2&rft_id=info:doi/10.1109%2FCVPR.2005.270&rft.externalDocID=1467515 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6919&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6919&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6919&client=summon |