Part-based statistical models for object classification and detection

We propose using simple mixture models to define a set of mid-level binary local features based on binary oriented edge input. The features capture natural local structures in the data and yield very high classification rates when used with a variety of classifiers trained on small training sets, ex...

Full description

Saved in:
Bibliographic Details
Published in2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05) Vol. 2; pp. 734 - 740 vol. 2
Main Authors Bernstein, E.J., Amit, Y.
Format Conference Proceeding
LanguageEnglish
Published IEEE 2005
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We propose using simple mixture models to define a set of mid-level binary local features based on binary oriented edge input. The features capture natural local structures in the data and yield very high classification rates when used with a variety of classifiers trained on small training sets, exhibiting robustness to degradation with clutter. Of particular interest is the use of the features as variables in simple statistical models for the objects thus enabling likelihood based classification. Pre-training decision boundaries between classes, a necessary component of non-parametric techniques, are thus avoided. Class models are trained separately with no need to access data of other classes. Experimental results are presented for handwritten character recognition, classification of deformed BTEX symbols involving hundreds of classes, and side view car detection.
AbstractList We propose using simple mixture models to define a set of mid-level binary local features based on binary oriented edge input. The features capture natural local structures in the data and yield very high classification rates when used with a variety of classifiers trained on small training sets, exhibiting robustness to degradation with clutter. Of particular interest is the use of the features as variables in simple statistical models for the objects thus enabling likelihood based classification. Pre-training decision boundaries between classes, a necessary component of non-parametric techniques, are thus avoided. Class models are trained separately with no need to access data of other classes. Experimental results are presented for handwritten character recognition, classification of deformed BTEX symbols involving hundreds of classes, and side view car detection.
Author Amit, Y.
Bernstein, E.J.
Author_xml – sequence: 1
  givenname: E.J.
  surname: Bernstein
  fullname: Bernstein, E.J.
  organization: Dept. of Stat., Chicago Univ., USA
– sequence: 2
  givenname: Y.
  surname: Amit
  fullname: Amit, Y.
  organization: Dept. of Stat., Chicago Univ., USA
BookMark eNpNjk1LAzEYhINWsK09evKSP7BrvrPvUZZahYJF1GvJJm8gZbsrm1z8967owbkMwwMzsyKLYRyQkFvOas4Z3Lcfh9daMKZrYdkFWXJmZGWAwyVZMWtAC2mFWPwD12ST84nNkiAbJZZke3BTqTqXMdBcXEm5JO96eh4D9pnGcaJjd0JfqO9dzinOtKRxoG4INGCZyZxuyFV0fcbNn6_J--P2rX2q9i-75_ZhXyVu9c-MN4CxCaibTjtEZWMQ1is5v_WABpQVUVgwoTMRmsgtQwDeiahBoZdrcvfbmxDx-Dmls5u-jlwZq7mW3zOkTys
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/CVPR.2005.270
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Statistics
Computer Science
EISSN 1063-6919
EndPage 740 vol. 2
ExternalDocumentID 1467515
Genre orig-research
GroupedDBID 23M
29F
29O
6IE
6IH
6IK
ABDPE
ACGFS
ALMA_UNASSIGNED_HOLDINGS
CBEJK
IPLJI
M43
RIE
RIO
RNS
ID FETCH-LOGICAL-i175t-bac69ef8de58b5aee47fd27c43769c9e69472f2796db6f98f170e991b2f594ec3
IEDL.DBID RIE
ISBN 0769523722
9780769523729
ISSN 1063-6919
IngestDate Wed Aug 27 02:18:30 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-bac69ef8de58b5aee47fd27c43769c9e69472f2796db6f98f170e991b2f594ec3
ParticipantIDs ieee_primary_1467515
PublicationCentury 2000
PublicationDate 20050000
PublicationDateYYYYMMDD 2005-01-01
PublicationDate_xml – year: 2005
  text: 20050000
PublicationDecade 2000
PublicationTitle 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05)
PublicationTitleAbbrev CVPR
PublicationYear 2005
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0000393842
ssj0023720
ssj0003211698
Score 1.7121849
Snippet We propose using simple mixture models to define a set of mid-level binary local features based on binary oriented edge input. The features capture natural...
SourceID ieee
SourceType Publisher
StartPage 734
SubjectTerms Character recognition
Degradation
Layout
Machine vision
Object detection
Photometry
Robustness
Scalability
Statistics
Training data
Title Part-based statistical models for object classification and detection
URI https://ieeexplore.ieee.org/document/1467515
Volume 2
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1La8MwDDZdTz11azv2xocdlzZxnjqXljHoKGMdvZXYlmFspGNNL_v1s5xHx9hh5JBYgZAYOdYn6ZMYu4VA-tKCLg8BlReZQHh5HlCUXeRGJKDDjPjOi8fkfhU9rON1h921XBhEdMlnOKZLF8vXW7UnV9mEVnVMjPIjC9wqrlbrTyGOaVbDPBqHFtkk0EYUBHVjcZHPJPQSCKCC8BDTDVFX4mnGcCjGOZm-LJ8q14ughsY_WrC4HWjeZ4vm3avEk7fxvpRj9fWrrON_P-6YjQ5cP75sd7ET1sFiwPq1ccrrpb-zoqb_QyMbsB5ZqlWh5yGbLa0SerQpar5r5Pk7d612dtzaxnwryenDFRnslKHklILnheYaS5cSVozYaj57nt57dY8G79UaHvRYlQCaTGOcyThHjFKjRaoi--MCBZhAlAojUkiI7weZCVIfrU0qhYkhQhWesm6xLfCMcfRD5evUQih72FOegrQIEcNAoPJDc86GNGubj6oMx6aesIu_xZes56qsOm_JFeuWn3u8tvZDKW-c4nwD4PS8GA
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT8IwFG-IHuSEAsZve_DoYOu2bj0TCCoQYsBwI2v7lhjNMDIu_vX2dR8Y48HssPUtWbam3fu9j997hNwJT7rSGF0OCFBOkHrMSRIPo-wsSRkX2o-R7zyd8fEyeFyFqwa5r7kwAGCTz6CHlzaWrzdqh66yPu7qEBnlh0bvh6xga9UeFWSZxqWhh2Pf2DZc1DEFhv1YbOyT-w4XniiMeBHiDVbW4qnGYl-Osz94mT8XzheGLY1_NGGxOmjUItPq7YvUk7feLpc99fWrsON_P--YdPdsPzqv9dgJaUDWJq0SntJy82-NqOoAUcnapIlYtSj13CHDuVmGDqpFTbeVPHmnttnOlhp0TDcS3T5UIWTHHCW7LGiSaaoht0lhWZcsR8PFYOyUXRqcVwM98LGKC0hjDWEswwQgiFLNIhWYX5dQArgIIpaySHBk_Ik49SIXDCqVLA1FAMo_JQfZJoMzQsH1lasjY0SZw5ySSEhjI4LvMVCun56TDs7a-qMoxLEuJ-zib_EtORovppP15GH2dEmatuaq9Z1ckYP8cwfXBk3k8sYuom_pr79i
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2005+IEEE+Computer+Society+Conference+on+Computer+Vision+and+Pattern+Recognition+%28CVPR%2705%29&rft.atitle=Part-based+statistical+models+for+object+classification+and+detection&rft.au=Bernstein%2C+E.J.&rft.au=Amit%2C+Y.&rft.date=2005-01-01&rft.pub=IEEE&rft.isbn=9780769523729&rft.issn=1063-6919&rft.eissn=1063-6919&rft.volume=2&rft.spage=734&rft.epage=740+vol.+2&rft_id=info:doi/10.1109%2FCVPR.2005.270&rft.externalDocID=1467515
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6919&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6919&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6919&client=summon